Skip to main content
Log in

Les canaux ASIC activés par l’acidose extracellulaire dans la douleur chronique

Acid-sensing ion channels (ASICs) in chronic pain

  • Published:
Douleur et Analgésie

Résumé

Les ASIC forment des canaux cationiques activés par une acidification du milieu extracellulaire, qui sont récemment apparus comme des senseurs importants du proton extracellulaire dans le système nerveux central et dans le système nerveux périphérique. Le rôle de ces canaux dans la nociception semble impliquer différentes isoformes à plusieurs niveaux: ASIC3 dans les neurones sensoriels et ASIC1a dans le système nerveux central, qui participe à la sensibilisation dans la moelle épinière et qui module le système opiacé endogène. L’effet analgésique puissant, comparable à celui de la morphine, d’une toxine de mygale capable de bloquer ASIC1a illustre bien le potentiel thérapeutique de ces canaux.

Abstract

Acid-sensing ion channels (ASICs) are protongated cationic channels that have recently been shown to be important sensors for extracellular pH in the central and peripheral nervous systems. The role of ASICs in nociception involves different isoforms at different levels. ASIC3 in sensory neurons and ASIC1a in the central nervous system, which takes part in spinal cord sensitization and modulates the endogenous opioid system. The strong analgesic effect, similar to that of morphine, of a tarantula toxin that can block ASIC1a illustrates the therapeutic potential of these channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Akopian AN, Chen CC, Ding Y, et al. (2000) A new member of the acid-sensing ion channel family. Neuroreport 11: 2217–2222

    Article  PubMed  CAS  Google Scholar 

  2. Babinski K, Lê KT, Seguéla P (1999) Molecular cloning and regional distribution of a human proton receptor subunit with biphasic functional properties. J Neurochem 72: 51–57

    Article  PubMed  CAS  Google Scholar 

  3. Baron A, Voilley N, Lazdunski M, Lingueglia E (2008) Acid-sensing ion channels in dorsal spinal cord neurons. J Neurosci 28: 1498–1508

    Article  PubMed  CAS  Google Scholar 

  4. Bässler EL, Ngo-Anh TJ, Geisler HS, et al. (2001) Molecular and functional characterization of acid-sensing ion channel (ASIC) 1b. J Biol Chem 276: 33782–33787

    Article  PubMed  Google Scholar 

  5. Cadiou H, Studer M, Jones NG, et al. (2007) Modulation of acid-sensing ion channel activity by nitric oxide. J Neurosci 27: 13251–13260

    Article  PubMed  CAS  Google Scholar 

  6. Canessa CM, Horisberger JD, Rossier BC (1993) Epithelial sodium channel related to proteins involved in neurodegeneration. Nature 361: 467–470

    Article  PubMed  CAS  Google Scholar 

  7. Champigny G, Voilley N, Waldmann R, Lazdunski M (1998) Mutations causing neurodegeneration in Caenorhabditis elegans drastically alter the pH sensitivity and inactivation of the mammalian H+-gated Na+ channel MDEG1. J Biol Chem 273: 15418–15422

    Article  PubMed  CAS  Google Scholar 

  8. Chen CC, England S, Akopian AN, Wood JN (1998) A sensory neuron-specific, proton-gated ion channel. Proc Natl Acad Sci USA 95: 10240–10245

    Article  PubMed  CAS  Google Scholar 

  9. Chen CC, Zimmer A, Sun WH, et al. (2002) A role for ASIC3 in the modulation of high-intensity pain stimuli. Proc Natl Acad Sci USA 99: 8992–8997

    PubMed  CAS  Google Scholar 

  10. de Weille JR, Bassilana F, Lazdunski M, Waldmann R (1998) Identification, functional expression and chromosomal localisation of a sustained human proton-gated cation channel. FEBS Lett 433: 257–260

    Article  PubMed  Google Scholar 

  11. Deval E, Salinas M, Baron A, et al. (2004) ASIC2b-dependent regulation of ASIC3, an essential acid-sensing ion channels subunit in sensory neurons via the partner protein PICK-1. J Biol Chem 279: 19531–19539

    Article  PubMed  CAS  Google Scholar 

  12. Diochot S, Salinas M, Baron A, et al. (2007) Peptides inhibitors of acid-sensing ion channels. Toxicon 49: 271–284

    Article  PubMed  CAS  Google Scholar 

  13. Duan B, Wu LJ, Yu YQ, et al. (2007) Upregulation of acid-sensing ion channel ASIC1a in spinal dorsal horn neurons contributes to inflammatory pain hypersensitivity. J Neurosci 27: 11139–11348

    Article  PubMed  CAS  Google Scholar 

  14. Dubé GR, Lehto SG, Breese NM, et al. (2005) Electrophysiological and in vivo characterization of A-317567, a novel blocker of acid-sensing ion channels. Pain 117: 88–96

    Article  PubMed  CAS  Google Scholar 

  15. Escoubas P, de Weille JR, Lecoq A, et al. (2000) Isolation of a tarantula toxin specific for a class of proton-gated Na+ channels. J Biol Chem 275: 25116–25121

    Article  PubMed  CAS  Google Scholar 

  16. Ettaiche M, Deval E, Cougnon M, et al. (2006) Silencing acid-sensing ion channel 1a alters cone-mediated retinal function. J Neurosci 26: 5800–5809

    Article  PubMed  CAS  Google Scholar 

  17. Ettaiche M, Guy N, Hofman P, et al. (2004) Acid-sensing ion channel 2 is important for retinal function and protects against light-induced retinal degeneration. J Neurosci 24: 1005–1012

    Article  PubMed  CAS  Google Scholar 

  18. Friese MA, Craner MJ, Etzensperger R, et al. (2007) Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nat Med 13: 1483–1489

    Article  PubMed  CAS  Google Scholar 

  19. Gannon KP, Vanlandingham LG, Jernigan NL, et al. (2008) Impaired pressure-induced constriction in mouse middle cerebral arteries in ASIC2 knockoutmice. AmJ Physiol Heart Circ Physiol 294: H1793–H1803

    Article  CAS  Google Scholar 

  20. García-Añoveros J, Derfler B, Neville-Golden J, et al. (1997) BNaC1 and BNaC2 constitute a new family of human neuronal sodium channels related to degenerins and epithelial sodium channels. Proc Natl Acad Sci USA 94: 1459–1464

    Article  PubMed  Google Scholar 

  21. García-Añoveros J, Samad TA, Zuvela-Jelaska L, et al. (2001) Transport and localization of the DEG/ENaC ion channel BNaC1alpha to peripheral mechanosensory terminals of dorsal root ganglia neurons. J Neurosci 21: 2678–2686

    PubMed  Google Scholar 

  22. Gründer S, Geissler HS, Bässler EL, Ruppersberg JP (2000) A new member of acid-sensing ion channels from pituitary gland. Neuroreport 11: 1607–1611

    Article  PubMed  Google Scholar 

  23. Ishibashi K, Marumo F (1998) Molecular cloning of a DEG/ENaC sodium channel cDNA from human testis. Biochem Biophys Res Commun 245: 589–593

    Article  PubMed  CAS  Google Scholar 

  24. Issberner U, Reeh PW, Steen KH (1996) Pain due to tissue acidosis: a mechanism for inflammatory and ischemic myalgia? Neurosci Lett 208: 191–194

    Article  PubMed  CAS  Google Scholar 

  25. Jahr H, van Driel M, van Osch GJ, et al. (2005) Identification of acid-sensing ion channels in bone. Biochem Biophys Res Commun 337: 349–354

    Article  PubMed  CAS  Google Scholar 

  26. Jasti J, Furukawa H, Gonzales EB, Gouaux E (2007) Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature 449: 316–323

    Article  PubMed  CAS  Google Scholar 

  27. Jones NG, Slater R, Cadiou H, et al. (2004) Acid-induced pain and its modulation in humans. J Neurosci 24: 10974–10979

    Article  PubMed  CAS  Google Scholar 

  28. Jones RC 3rd, Xu L, Gebhart GF (2005) The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3. J Neurosci 25: 10981–10989

    Article  PubMed  CAS  Google Scholar 

  29. Krishtal O (2003) The ASICs: signaling molecules? Modulators? Trends Neurosci 26: 477–483

    Article  PubMed  CAS  Google Scholar 

  30. Krishtal OA, Pidoplichko VI (1980) A receptor for protons in the nerve cell membrane. Neuroscience 5: 2325–2327

    Article  PubMed  CAS  Google Scholar 

  31. Lingueglia E (2007) Acid-sensing ion channels in sensory perception. J Biol Chem 282: 17325–17329

    Article  PubMed  CAS  Google Scholar 

  32. Lingueglia E, de Weille JR, Bassilana F, et al. (1997) A modulatory subunit of acid-sensing ion channels in brain and dorsal root ganglion cells. J Biol Chem 272: 29778–29783

    Article  PubMed  CAS  Google Scholar 

  33. Lingueglia E, Deval E, Lazdunski M (2006) FMRFamide-gated sodium channel and ASIC channels: a new class of ionotropic receptors for FMRFamide and related peptides. Peptides 27: 1138–1152

    Article  PubMed  CAS  Google Scholar 

  34. Lingueglia E, Voilley N, Waldmann R, et al. (1993) Expression cloning of an epithelial amiloride-sensitive Na+ channel. A new channel type with homologies to Caenorhabditis elegans degenerins. FEBS Lett 318: 95–99

    Article  PubMed  CAS  Google Scholar 

  35. Mamet J, Baron A, Lazdunski M, Voilley N (2002) Proinflammatory mediators, stimulators of sensory neuron excitability via the expression of acid-sensing ion channels. J Neurosci 22: 10662–10670

    PubMed  CAS  Google Scholar 

  36. Mamet J, Lazdunski M, Voilley N (2003) How nerve growth factor drives physiological and inflammatory expressions of acid-sensing ion channel 3 in sensory neurons. J Biol Chem 278: 48907–48913

    Article  PubMed  CAS  Google Scholar 

  37. Mazzuca M, Heurteaux C, Alloui A, et al. (2007) A tarantula peptide against pain via ASIC1a channels and opioid mechanisms. Nat Neurosci 10: 943–945

    Article  PubMed  CAS  Google Scholar 

  38. Mogil JS, Breese NM, Witty MF, et al. (2005) Transgenic expression of a dominant-negative ASIC3 subunit leads to increased sensitivity to mechanical and inflammatory stimuli. J Neurosci 25: 9893–9901

    Article  PubMed  CAS  Google Scholar 

  39. Page AJ, Brierley SM, Martin CM, et al. (2005) Different contributions of ASIC channels 1a, 2 and 3 in gastrointestinal mechanosensory function. Gut 54: 1408–1415

    Article  PubMed  CAS  Google Scholar 

  40. Peng BG, Ahmad S, Chen S, et al. (2004) Acid-sensing ion channel 2 contributes a major component to acid-evoked excitatory responses in spiral ganglion neurons and plays a role in noise susceptibility of mice. J Neurosci 24: 10167–10175

    Article  PubMed  CAS  Google Scholar 

  41. Price MP, Lewin GR, McIlwrath SL, et al. (2000) The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407: 1007–1011

    Article  PubMed  CAS  Google Scholar 

  42. Price MP, McIlwrath SL, Xie J, et al. (2001) The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32: 1071–1083

    Article  PubMed  CAS  Google Scholar 

  43. Price MP, Snyder PM, Welsh MJ (1996) Cloning and expression of a novel human brain Na+ channel. J Biol Chem 271: 7879–7882

    Article  PubMed  CAS  Google Scholar 

  44. Reeh PW, Steen KH (1996) Tissue acidosis in nociception and pain. Prog Brain Res 113: 143–151

    Article  PubMed  CAS  Google Scholar 

  45. Sluka KA, Price MP, Breese NM, et al. (2003) Chronic hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, but not ASIC1. Pain 106: 229–239

    Article  PubMed  CAS  Google Scholar 

  46. Sluka KA, Radhakrishnan R, Benson CJ, et al. (2006) ASIC3 in muscle mediates mechanical, but not heat, hyperalgesia associated with muscle inflammation. Pain 129: 102–112

    Article  PubMed  Google Scholar 

  47. Smith ES, Cadiou H, McNaughton PA (2007) Arachidonic acid potentiates acid-sensing ion channels in rat sensory neurons by a direct action. Neuroscience 145: 686–698

    Article  PubMed  CAS  Google Scholar 

  48. Szallasi A, Cortright DN, Blum CA, Eid SR (2007) The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov 6: 357–372

    Article  PubMed  CAS  Google Scholar 

  49. Tominaga M, Caterina MJ, Malmberg AB, et al. (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21: 531–543

    Article  PubMed  CAS  Google Scholar 

  50. Ugawa S, Minami Y, Guo W, et al. (1998) Receptor that leaves a sour taste in the mouth. Nature 395: 555–556

    Article  PubMed  CAS  Google Scholar 

  51. Ugawa S, Ueda T, Ishida Y, et al. (2002) Amiloride-blockable acid-sensing ion channels are leading acid sensors expressed in human nociceptors. J Clin Invest 110: 1185–1190

    PubMed  CAS  Google Scholar 

  52. Voilley N, de Weille J, Mamet J, Lazdunski M (2001) Non-steroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J Neurosci 21: 8026–8033

    PubMed  CAS  Google Scholar 

  53. Waldmann R, Bassilana F, de Weille J, et al. (1997) Molecular cloning of a non-inactivating proton-gated Na+ channel specific for sensory neurons. J Biol Chem 272: 20975–20978

    Article  PubMed  CAS  Google Scholar 

  54. Waldmann R, Champigny G, Bassilana F, et al. (1997) A protongated cation channel involved in acid-sensing. Nature 386: 173–177

    Article  PubMed  CAS  Google Scholar 

  55. Waldmann R, Champigny G, Voilley N, et al. (1996) The mammalian degenerin MDEG, an amiloride-sensitive cation channel activated by mutations causing neurodegeneration in Caenorhabditis elegans. J Biol Chem 271: 10433–10436

    Article  PubMed  CAS  Google Scholar 

  56. Wemmie JA, Askwith CC, Lamani E, et al. (2003) Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning. J Neurosci 23: 5496–5502

    PubMed  CAS  Google Scholar 

  57. Wemmie JA, Chen J, Askwith CC, et al. (2002) The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron 34: 463–477

    Article  PubMed  CAS  Google Scholar 

  58. Wemmie JA, Coryell MW, Askwith CC, et al. (2004) Overexpression of acid-sensing ion channel 1a in transgenic mice increases acquired fear-related behavior. Proc Natl Acad Sci USA 101: 3621–3626

    Article  PubMed  CAS  Google Scholar 

  59. Wemmie JA, Price MP, Welsh MJ (2006) Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends Neurosci 29: 578–586

    Article  PubMed  CAS  Google Scholar 

  60. Wu LJ, Duan B, Mei YD, et al. (2004) Characterization of acid-sensing ion channels in dorsal horn neurons of rat spinal cord. J Biol Chem 279: 43716–43724

    Article  PubMed  CAS  Google Scholar 

  61. Xiong ZG, Zhu XM, Chu XP, et al. (2004) Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118: 687–698

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Lingueglia.

About this article

Cite this article

Lingueglia, E. Les canaux ASIC activés par l’acidose extracellulaire dans la douleur chronique. Douleur analg 21, 209–214 (2008). https://doi.org/10.1007/s11724-008-0110-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11724-008-0110-7

Mots clés

Keywords

Navigation