Skip to main content
Log in

Homéostasie chlorure et cotransporteurs cation-chlorure, douleur et nociception

Chloride homeostasis and cation-chloride cotransporters, pain and nociception

  • Published:
Douleur et Analgésie

Résumé

En régulant les gradients anioniques, les cotransporteurs cation-chlorure, NKCC1 qui assure l’entrée d’ions chlorures et KCC2 qui en assure la sortie, modulent le système GABAergique et contrôlent les mécanismes de la douleur. Lors d’une inflammation ou d’un traumatisme, l’augmentation de l’activité de NKCC1 dans les neurones sensitifs et/ou la diminution de l’expression de KCC2 dans les neurones spinaux conduisent à la perte du tonus inhibiteur GABAergique et sont responsables de douleurs neuropathiques.

Abstract

By regulating the anionic gradient, two cationchloride cotransporters, NKCC1, which promotes the entrance of chloride ions and KCC2, which promotes their exit, modulate the GABAergic system and control pain mechanisms. Following inflammation or nerve injury, the increase in NKCC1 activity among sensory neurons and/or the decrease in KCC2 expression in spinal neurons, leads to a loss of inhibitory tone and induces neuropathic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Alvarez-Leefmans FJ, Leon-Olea M, Mendoza-Sotelo J, et al. (2001) Immunolocalization of the Na(+)-K(+)-2Cl() cotransporter in peripheral nervous tissue of vertebrates. Neuroscience 104: 569–582

    Article  PubMed  CAS  Google Scholar 

  2. André S, Boukhaddaoui H, Campo B, et al. (2003) Axotomy-induced expression of calcium-activated chloride current in subpopulations of mouse dorsal root ganglion neurons. J Neurophysiol 90: 3764–3773

    Article  PubMed  Google Scholar 

  3. Aptel H, Hilaire C, Pieraut S, et al. (2007) The Cav3.2/alpha1H T-type Ca2+ current is a molecular determinant of excitatory effects of GABA in adult sensory neurons. Mol Cell Neurosci 36: 293–303

    Article  PubMed  CAS  Google Scholar 

  4. Ault B, Hildebrand LM (1994) GABAA receptor-mediated excitation of nociceptive afferents in the rat isolated spinal cord-tail preparation. Neuropharmacology 33: 109–114

    Article  PubMed  CAS  Google Scholar 

  5. Baba H, Ji RR, Kohno T, et al. (2003) Removal of GABAergic inhibition facilitates polysynaptic A fiber-mediated excitatory transmission to the superficial spinal dorsal horn. Mol Cell Neurosci 24: 818–830

    Article  PubMed  CAS  Google Scholar 

  6. Carlton SM, Zhou S, Coggeshall RE (1999) Peripheral GABAA receptors: evidence for peripheral primary afferent depolarization. Neuroscience 93: 713–722

    Article  PubMed  CAS  Google Scholar 

  7. Cervero F, Laird JM, Garcia-Nicas E (2003) Secondary hyperalgesia and presynaptic inhibition: an update. Eur J Pain 7: 345–351

    Article  PubMed  Google Scholar 

  8. Coull JA, Beggs S, Boudreau D, et al. (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438: 1017–1021

    Article  PubMed  CAS  Google Scholar 

  9. Coull JA, Boudreau D, Bachand K, et al. (2003) Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature 424: 938–942

    Article  PubMed  CAS  Google Scholar 

  10. Currie KP, Scott RH (1992) Calcium-activated currents in cultured neurones from rat dorsal root ganglia. Br J Pharmacol 106: 593–602

    PubMed  CAS  Google Scholar 

  11. Darman RB, Forbush B (2002) A regulatory locus of phosphorylation in the N terminus of the Na-K-Cl cotransporter, NKCC1. J Biol Chem 277: 37542–37550

    Article  PubMed  CAS  Google Scholar 

  12. De Koninck Y (2007) Altered chloride homeostasis in neurological disorders: a new target. Curr Opin Pharmacol 7: 93–99

    Article  PubMed  Google Scholar 

  13. Delpire E (2000) Cation-chloride cotransporters in neuronal communication. News Physiol Sci 15: 309–312

    PubMed  CAS  Google Scholar 

  14. Flemmer AW, Gimenez I, Dowd BF, et al. (2002) Activation of the Na-K-Cl cotransporter NKCC1 detected with a phospho-specific antibody. J Biol Chem 277: 37551–37558

    Article  PubMed  CAS  Google Scholar 

  15. Galan A, Cervero F (2005) Painful stimuli induce in vivo phosphorylation and membrane mobilization of mouse spinal cord NKCC1 cotransporter. Neuroscience 133: 245–252

    Article  PubMed  CAS  Google Scholar 

  16. Gamba G (2005) Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters. Physiol Rev 85: 423–493

    Article  PubMed  CAS  Google Scholar 

  17. Garcia-Nicas E, Laird JM, Cervero F (2001) Vasodilatation in hyperalgesic rat skin evoked by stimulation of afferent A beta-fibers: further evidence for a role of dorsal root reflexes in allodynia. Pain 94: 283–291

    Article  PubMed  CAS  Google Scholar 

  18. Granados-Soto V, Arguelles CF, Alvarez-Leefmans FJ (2005) Peripheral and central antinociceptive action of Na+-K+-2Cl cotransporter blockers on formalin-induced nociception in rats. Pain 114: 231–238

    Article  PubMed  CAS  Google Scholar 

  19. Labrakakis C, Tong CK, Weissman T, et al. (2003) Localization and function of ATP and GABAA receptors expressed by nociceptors and other postnatal sensory neurons in rat. J Physiol 549: 131–142

    Article  PubMed  CAS  Google Scholar 

  20. Laird JM, Garcia-Nicas E, Delpire EJ, Cervero F (2004) Presynaptic inhibition and spinal pain processing in mice: a possible role of the NKCC1 cation-chloride cotransporter in hyperalgesia. Neurosci Lett 361: 200–203

    Article  PubMed  CAS  Google Scholar 

  21. Lin Q, Wu J, Willis WD (1999) Dorsal root reflexes and cutaneous neurogenic inflammation after intradermal injection of capsaicin in rats. J Neurophysiol 82: 2602–2611

    PubMed  CAS  Google Scholar 

  22. Lin Q, Zou X, Willis WD (2000) A delta and C primary afferents convey dorsal root reflexes after intradermal injection of capsaicin in rats. J Neurophysiol 84: 2695–2698

    PubMed  CAS  Google Scholar 

  23. Lu J, Karadsheh M, Delpire E (1999) Developmental regulation of the neuronal-specific isoform of K-Cl cotransporter KCC2 in postnatal rat brains. J Neurobiol 39: 558–568

    Article  PubMed  CAS  Google Scholar 

  24. Mayer ML (1985) A calcium-activated chloride current generates the after-depolarization of rat sensory neurones in culture. J Physiol 364: 217–239

    PubMed  CAS  Google Scholar 

  25. Moore KA, Kohno T, Karchewski LA, et al. (2002) Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J Neurosci 22: 6724–6731

    PubMed  CAS  Google Scholar 

  26. Morales-Aza BM, Chillingworth NL, Payne JA, Donaldson LF (2004) Inflammation alters cation-chloride cotransporter expression in sensory neurons. Neurobiol Dis 17: 62–69

    Article  PubMed  CAS  Google Scholar 

  27. Narikawa K, Furue H, Kumamoto E, Yoshimura M(2000) In vivo patch-clamp analysis of IPSCs evoked in rat substantia gelatinosa neurons by cutaneous mechanical stimulation. J Neurophysiol 84: 2171–2174

    PubMed  CAS  Google Scholar 

  28. Pathirathna S, Brimelow BC, Jagodic MM, et al. (2005) New evidence that both T-type calcium channels and GABAA channels are responsible for the potent peripheral analgesic effects of 5-alphareduced neuroactive steroids. Pain 114: 429–443

    Article  PubMed  CAS  Google Scholar 

  29. Pieraut S, Laurent-Matha V, Sar C, et al. (2007) NKCC1 phosphorylation stimulates neurite growth of injured adult sensory neurons. J Neurosci 27: 6751–6759

    Article  PubMed  CAS  Google Scholar 

  30. Plotkin MD, Kaplan MR, Peterson LN, et al. (1997) Expression of the Na(+)-K(+)-2Cl cotransporter BSC2 in the nervous system. Am J Physiol 272: C173–C183

    PubMed  CAS  Google Scholar 

  31. Rees H, Sluka KA, Westlund KN, Willis WD (1995) The role of glutamate and GABAA receptors in the generation of dorsal root reflexes by acute arthritis in the anaesthetized rat. J Physiol 484(Pt 2): 437–445

    PubMed  CAS  Google Scholar 

  32. Rivera C, Li H, Thomas-Crusells J, et al. (2002) BDNF-induced TrkB activation down-regulates the K+-Cl cotransporter KCC2 and impairs neuronal Cl extrusion. J Cell Biol 159: 747–752

    Article  PubMed  CAS  Google Scholar 

  33. Rivera C, Voipio J, Payne JA, et al. (1999) The K+-Cl- cotransporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397: 251–255

    Article  PubMed  CAS  Google Scholar 

  34. Sung KW, Kirby M, McDonald MP, et al. (2000) Abnormal GABAA receptor-mediated currents in dorsal root ganglion neurons isolated from Na-K-2Cl cotransporter null mice. J Neurosci 20: 7531–7538

    PubMed  CAS  Google Scholar 

  35. Todd AJ, Watt C, Spike RC, Sieghart W (1996) Colocalization of GABA, glycine, and their receptors at synapses in the rat spinal cord. J Neurosci 16: 974–982

    PubMed  CAS  Google Scholar 

  36. Valencia-de Ita S, Lawand NB, Lin Q, et al. (2006) Role of the Na+-K+-2Cl cotransporter in the development of capsaicininduced neurogenic inflammation. J Neurophysiol 95: 3553–3561

    Article  PubMed  CAS  Google Scholar 

  37. Woolf CJ, Mannion RJ (1999) Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet 353: 1959–1964

    Article  PubMed  CAS  Google Scholar 

  38. Woolf CJ, Salter MW (2000) Neuronal plasticity: increasing the gain in pain. Science 288: 1765–1769

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Scamps or J. Valmier.

About this article

Cite this article

Scamps, F., Pieraut, S. & Valmier, J. Homéostasie chlorure et cotransporteurs cation-chlorure, douleur et nociception. Douleur analg 21, 203–208 (2008). https://doi.org/10.1007/s11724-008-0106-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11724-008-0106-3

Mots clés

Keywords

Navigation