On the robustness of consensus-based behaviors for robot swarms


In swarm robotics, behaviors requiring consensus, meaning having the robots agree on a set of variables, have attracted great attention over the years. Determining the robustness and applicability of these behaviors in harsh communication environments is an open area of research. In this paper, we propose the use of a formal software engineering technique, statistical model checking, to model and assess the robustness of consensus-based behaviors from a communication standpoint. We validate our approach on two common scenarios for a robot swarm: the election of a leader and the allocation of a set of tasks. With the proposed model, we verify the functional correctness of these consensus-based algorithms, as well as assessing their robustness to communication loss and robot failures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16


  1. 1.


  2. 2.


  3. 3.


  4. 4.


  5. 5.



  1. Agha, G., & Palmskog, K. (2018). A survey of statistical model checking. ACM Transactions on Modeling and Computer Simulation (TOMACS), 28(1), 6.

    MathSciNet  Article  Google Scholar 

  2. Amin, S., Elahi, A., Saghar, K., & Mehmood, F. (2017). Formal modelling and verification approach for improving probabilistic behaviour of robot swarms. In 2017 14th international Bhurban conference applied sciences and technology (IBCAST) (pp. 392–400). IEEE.

  3. Armando, A., Mantovani, J., & Platania, L. (2009). Bounded model checking of software using smt solvers instead of sat solvers. International Journal on Software Tools for Technology Transfer, 11(1), 69–83.

    Article  Google Scholar 

  4. Barringer, H., Fisher, M., Gabbay, D. M., & Gough, G. (2013). Advances in temporal logic. Berlin: Springer.

    MATH  Google Scholar 

  5. Behrmann, G., Larsen, K. G., & Rasmussen, J. I. (2004). Priced timed automata: Algorithms and applications. In International symposium on formal methods for components and objects (pp. 162–182). Springer.

  6. Behrmann, G., David, A., Larsen, K. G., Hakansson, J., Petterson, P., Yi, W., & Hendriks, M. (2006). Uppaal 4.0. In Third international conference quantitative evaluation of systems, 2006. QEST 2006 (pp. 125–126). IEEE.

  7. Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1–41.

    Article  Google Scholar 

  8. Brunet, L., Choi, H. L., & How, J. P. (2008). Consensus-based auction approaches for decentralized task assignment. In AIAA guidance, navigation, and control conference (p. 6839). Honolulu, Hawaii.

  9. Bulychev, P. E, David, A., Larsen, K. G., Legay, A., Li, G., Poulsen, D. B., & Stainer, A. (2012). Monitor-based statistical model checking for weighted metric temporal logic. In LPAR (pp. 168–182). Springer.

  10. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., & Tacchella, A. (2002). Nusmv 2: An opensource tool for symbolic model checking. In: International conference on computer aided verification (pp. 359–364). Springer.

  11. Clarke, E., Grumberg, O., Jha, S., Lu, Y., & Veith, H. (2001). Progress on the state explosion problem in model checking. In Informatics (pp. 176–194). Springer.

  12. Clarke, E. M., Grumberg, O., & Long, D. E. (1994). Model checking and abstraction. ACM Transactions on Programming Languages and Systems (TOPLAS), 16(5), 1512–1542.

    Article  Google Scholar 

  13. Clarke, E. M., Grumberg, O., & Peled, D. (1999). Model checking. Cambridge: MIT Press.

    MATH  Google Scholar 

  14. Das, G. P., McGinnity, T. M., Coleman, S. A., & Behera, L. (2015). A distributed task allocation algorithm for a multi-robot system in healthcare facilities. Journal of Intelligent and Robotic Systems, 80(1), 33–58.

    Article  Google Scholar 

  15. David, A., Larsen, K. G., Legay, A., Mikučionis, M., Poulsen, D. B., Van Vliet, J., & Wang, Z. (2011). Statistical model checking for networks of priced timed automata. In International conference on formal modeling and analysis of timed systems (pp. 80–96). Springer.

  16. De Nicola, R., Ferrari, G. L., & Pugliese, R. (1998). Klaim: A kernel language for agents interaction and mobility. IEEE Transactions on Software Engineering, 24(5), 315–330.

    Article  Google Scholar 

  17. De Nicola, R., & Kühn, E. (2016). Software engineering and formal methods. In Proceedings 14th international conference SEFM 2016. Springer.

  18. Dixon, C., Winfield, A. F., Fisher, M., & Zeng, C. (2012). Towards temporal verification of swarm robotic systems. Robotics and Autonomous Systems, 60(11), 1429–1441.

    Article  Google Scholar 

  19. Dorigo, M., Birattari, M., & Brambilla, M. (2014). Swarm robotics. Scholarpedia, 9(1), 1463.

    Article  Google Scholar 

  20. Fainekos, G. E., Kress-Gazit, H., & Pappas, G. J. (2005). Temporal logic motion planning for mobile robots. In Proceedings of the 2005 IEEE international conference on robotics and automation (pp. 2020–2025). IEEE.

  21. Fernandez, J. C., Mounier, L., & Pachon, C. (2005). A model-basedapproach for robustness testing. IFIP international conference on testing of communicating systems (pp. 333–348).

  22. Gjondrekaj, E., Loreti, M., Pugliese, R., Tiezzi, F., Pinciroli, C., Brambilla, M., Birattari, M., & Dorigo, M. (2012). Towards a formal verification methodology for collective robotic systems. In International conference on formal engineering methods (pp. 54–70). Springer.

  23. Grassé, P. P. (1959). La reconstruction du nid et les coordinations interindividuelles chezbellicositermes natalensis etcubitermes sp. la théorie de la stigmergie: Essai d’interprétation du comportement des termites constructeurs. Insectes sociaux, 6(1), 41–80.

    Article  Google Scholar 

  24. Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., & Skou, A. (2008). Testing real-time systems using uppaal. In Formal methods and testing (pp. 77–117). Springer.

  25. Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58(301), 13–30.

    MathSciNet  Article  Google Scholar 

  26. Holzmann, G. (2003). Spin model checker: The primer and referencemanual. Boston: Addison-Wesley Professional.

    Google Scholar 

  27. Konur, S., Dixon, C., & Fisher, M. (2012). Analysing robot swarm behaviour via probabilistic model checking. Robotics and Autonomous Systems, 60(2), 199–213.

    Article  Google Scholar 

  28. Kouvaros, P., & Lomuscio, A. (2016). Formal verification of opinion formation in swarms. In Proceedings of the 2016 international conference on autonomous agents and multiagent systems (pp. 1200–1208). International Foundation for Autonomous Agents and Multiagent Systems.

  29. Kouvaros, P., & Lomuscio, A. (2017). Verifying fault-tolerance in parameterised multi-agent systems. In IJCAI (pp. 288–294).

  30. Kuriki, Y., & Namerikawa, T. (2015). Experimental validation of cooperative formation control with collision avoidance for a multi-uav system. In Automation, robotics and applications (ICARA) (pp. 531–536). IEEE.

  31. Kwiatkowska, M., Norman, G., & Parker, D. (2011). Prism 4.0: Verification of probabilistic real-time systems. In Computer aided verification (pp 585–591). Springer.

  32. Mikaël, L. (2012). Formal verification of flexibility in swarm robotics. Ph.D. thesis, Citeseer.

  33. Otte, M., Kuhlman, M., & Sofge, D. (2017). Multi-robot task allocation with auctions in harsh communication environments. In Multi-robot and multi-agent systems (MRS) (pp. 32–39). IEEE.

  34. Pinciroli, C., Lee-Brown, A., & Beltrame, G. (2015) A tuple space for data sharing in robot swarms. In BICT 2015, proceedings of the 9th EAI international conference on bio-inspired information and communications technologies (formerly BIONETICS) (pp. 287–294).

  35. Pinciroli, C., Lee-Brown, A., & Beltrame, G. (2016). Buzz: An extensible programming language for self-organizing heterogeneous robot swarms. In 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3794–3800). IEEE.

  36. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., et al. (2012). ARGoS: A modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence, 6(4), 271–295.

    Article  Google Scholar 

  37. Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., & Trianni, V. (2015). A design pattern for decentralised decision making. PloS ONE, 10(10), e0140950.

    Article  Google Scholar 

  38. Robin, C., & Lacroix, S. (2016). Multi-robot target detection and tracking: taxonomy and survey. Autonomous Robots, 40(4), 729–760.

    Article  Google Scholar 

  39. Rossi, F., Bandyopadhyay, S., Wolf, M., & Pavone, M. (2018). Review of multi-agent algorithms for collective behavior: A structural taxonomy. IFAC-Papers OnLine, 51(12), 112–117.

    Article  Google Scholar 

  40. Rubinstein, R. Y., & Kroese, D. P. (2016). Simulation and the Monte Carlo method (p. 10). New York: Wiley.

    Book  Google Scholar 

  41. Ruiz, M. C., Macià, H., Mateo, J. A., & Calleja, J. (2016). Formal analysis of an energy-aware collision resolution protocol for wireless sensor networks. Procedia Computer Science, 80, 1191–1201.

    Article  Google Scholar 

  42. Saghar, K., Henderson, W., Kendall, D., Bouridane, A. (2010). Formal modelling of a robust wireless sensor network routing protocol. In 2010 NASA/ESA conference on adaptive hardware and systems (pp. 281–288). IEEE.

  43. Senanayake, M., Senthooran, I., Barca, J. C., Chung, H., Kamruzzaman, J., & Murshed, M. (2016). Search and tracking algorithms for swarms of robots: A survey. Robotics and Autonomous Systems, 75, 422–434.

    Article  Google Scholar 

  44. St-Onge, D., Varadharajan, V.S., Li, G., Svogor, I., & Beltrame, G. (2017). Ros and buzz: Consensus-based behaviors for heterogeneous teams. arXiv preprint arXiv:171008843

  45. Strobel, V., Castelló Ferrer, E., & Dorigo, M. (2018). Managing byzantine robots via blockchain technology in a swarm robotics collective decision making scenario. In Proceedings of the 17th international conference on autonomous agents and multiagent systems (pp. 541–549). International foundation for autonomous agents and multiagent systems.

  46. Tartakovsky, A., Nikiforov, I., & Basseville, M. (2014). Sequential analysis: Hypothesis testing and changepoint detection. Boca Raton: CRC Press.

    Book  Google Scholar 

  47. Tripakis, S., & Yovine, S. (2001). Analysis of timed systems using time-abstracting bisimulations. Formal Methods Syst Des, 18(1), 25–68.

    Article  Google Scholar 

  48. Valentini, G. (2017). Achieving consensus in robot swarms. Design and analysis of strategies for the best-of-n-problem. In Studies in computational intelligence (Vol. 706). Springer.

  49. Wald, A. (1945). Sequential tests of statistical hypotheses. The Annals of Mathematical Statistics, 16(2), 117–186.

    MathSciNet  Article  Google Scholar 

  50. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of small-world networks. Nature, 393(6684), 440.

    Article  Google Scholar 

  51. Wei, X., Fengyang, D., Qingjie, Z., Bing, Z., & Hongchang, S. (2015). A new fast consensus algorithm applied in rendezvous of multi-uav. In Control and decision conference (CCDC (pp. 55–60). IEEE.

  52. Winfield, A. F., Sa, J., Fernández-Gago, M. C., Dixon, C., & Fisher, M. (2005). On formal specification of emergent behaviours in swarm robotic systems. International Journal of Advanced Robotic Systems, 2(4), 39.

    Article  Google Scholar 

  53. Yang, B., Bryant, R. E., OHallaron, D. R, Biere, A., Coudert, O., Janssen, G., Ranjan, R. K., & Somenzi, F. (1998). A performance study of bdd-based model checking. In International conference on formal methods in computer-aided design (pp. 255–289). Springer.

Download references


Funded was provided by NSERC Strategic Partnership (Grant 479149-2015).

Author information



Corresponding author

Correspondence to Majda Moussa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moussa, M., Beltrame, G. On the robustness of consensus-based behaviors for robot swarms. Swarm Intell 14, 205–231 (2020). https://doi.org/10.1007/s11721-020-00183-1

Download citation


  • Swarm robotics
  • Autonomous systems
  • Formal verification
  • Statistical model checking