A study on force-based collaboration in swarms

Abstract

Cooperative manipulation is a basic skill in groups of humans, animals and in many robotic applications. Besides being an interesting challenge, communication-less approaches have been applied to groups of robots in order to achieve higher scalability and simpler hardware and software design. We present a generic model and control law for robots cooperatively manipulating an object, for both ground and floating systems. The control method exploits a leader–follower scheme and is based only on implicit communication (i.e., the sensing of contact forces). The control objective mainly consists of steering the object manipulated by the swarm of robots to a desired position and orientation in a cooperative way. For a system with just one leader, we present analytical results on the equilibrium configurations and their stability that are then validated by numerical simulations. The role of object internal forces (induced by the robots through contact forces) is discussed in terms of convergence of the object position and orientation to the desired values. We also present a discussion on additional properties of the controlled system that were investigated using thorough numerical analysis, namely the robustness of the system when the object is subject to external disturbances in non-ideal conditions, and how the number of leaders in the swarm can affect the aforementioned convergence and robustness.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Notes

  1. 1.

    \(\mathrm{SO}({3}) = \{ \varvec{R}\in {\mathbb {R}}^{3 \times 3} \; | \; \varvec{R}^\top \varvec{R}= \varvec{I}_{3} \}\) where \(\varvec{I}_{i} \in {\mathbb {R}}^{i \times i}\) is the identity matrix of dimension i.

  2. 2.

    The left superscript indicates the reference frame. From now on, \({\mathcal {F}}_W\) is considered as reference frame when the superscript is omitted.

  3. 3.

    \(\varvec{S}(\star ): {\mathbb {R}}^{3} \rightarrow {\mathbb {R}}^{3 \times 3}\) is such that \(\varvec{S}({\varvec{x}}){\varvec{y}}= {\varvec{x}}\times {\varvec{y}}\) for every \({\varvec{x}}\in {\mathbb {R}}^{3}\) and \({\varvec{y}}\in {\mathbb {R}}^{3}\).

  4. 4.

    Forces that do not result in a motion of the object, nor compensate any external wrench. For a more complete description, the reader can refer to Prattichizzo and Trinkle (2008).

  5. 5.

    \(\varvec{R}_{{\varvec{z}}_W}(\star ) \in \mathrm{SO}({3})\) describes a rotation along the axes \({\varvec{z}}_W\) about the angle \(\star \).

References

  1. Abbasnejad, G., & Carricato, M. (2015). Direct geometrico-static problem of underconstrained cable-driven parallel robots with n cables. IEEE Transactions on Robotics, 31(2), 468–478.

    Article  Google Scholar 

  2. Anitescu, M., & Potra, F. A. (1997). Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dynamics, 14(3), 231–247.

    MathSciNet  Article  Google Scholar 

  3. Berman, S., Lindsey, Q., Sakar, M. S., Kumar, V., & Pratt, S. C. (2011). Experimental study and modeling of group retrieval in ants as an approach to collective transport in swarm robotic systems. Proceedings of the IEEE, 99(9), 1470–1481.

    Article  Google Scholar 

  4. Caccavale, F., Giglio, G., Muscio, G., & Pierri, F. (2015). Cooperative impedance control for multiple UAVs with a robotic arm. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2366–2371). IEEE.

  5. Conti, R., Meli, E., Ridolfi, A., & Allotta, B. (2015). An innovative decentralized strategy for I-AUVs cooperative manipulation tasks. Robotics and Autonomous Systems, 72, 261–276.

    Article  Google Scholar 

  6. de Wit, C. C., Siciliano, B., & Bastin, G. (1996). Motion and force control. In Theory of robot control, chapter 4 (pp. 141–175). Springer.

  7. Di Leonardo, R., Angelani, L., Dell’Arciprete, D., Ruocco, G., Iebba, V., Schippa, S., et al. (2010). Bacterial ratchet motors. Proceedings of the National Academy of Sciences, 107(21), 9541–9545.

    Article  Google Scholar 

  8. Farivarnejad, H., & Berman, S. (2018). Stability and convergence analysis of a decentralized proportional-integral control strategy for collective transport. In 2018 annual American control conference (ACC) (pp. 2794–2801). IEEE.

  9. Ferrante, E., Turgut, A. E., Huepe, C., Stranieri, A., Pinciroli, C., & Dorigo, M. (2012). Self-organized flocking with a mobile robot swarm: A novel motion control method. Adaptive Behavior, 20(6), 460–477.

    Article  Google Scholar 

  10. Ferrante, E., Turgut, A. E., Mathews, N., Birattari, M., & Dorigo, M. (2010). Flocking in stationary and non-stationary environments: A novel communication strategy for heading alignment. In International conference on parallel problem solving from nature (pp. 331–340). Springer.

  11. Franchi, A., Petitti, A., & Rizzo, A. (2019). Distributed estimation of state and parameters in multi-agent cooperative load manipulation. IEEE Transactions on Control of Network Systems, 6(2), 690–701. https://doi.org/10.1109/TCNS.2018.2873153.

    MathSciNet  Article  MATH  Google Scholar 

  12. Franks, N. R. (1986). Teams in social insects: Group retrieval of prey by army ants (Eciton burchelli, Hymenoptera: Formicidae). Behavioral Ecology and Sociobiology, 18(6), 425–429.

    Article  Google Scholar 

  13. Franks, N. R., Sendova-Franks, A. B., & Anderson, C. (2001). Division of labour within teams of new world and old world army ants. Animal Behaviour, 62(4), 635–642.

    Article  Google Scholar 

  14. Fumagalli, M., Naldi, R., Macchelli, A., Forte, F., Keemink, A. Q., Stramigioli, S., et al. (2014). Physical interaction with the environment. IEEE Robotics & Automation Magazine, 21(3), 41–50.

    Article  Google Scholar 

  15. Gabellieri, C., Tognon, M., Palottino, L., & Franchi, A. (2018). A study on force-based collaboration in flying swarms. In 11th international conference on swarm intelligence, Rome, Italy (pp. 3–15).

  16. Gassner, M., Cieslewski, T., & Scaramuzza, D. (2017). Dynamic collaboration without communication: Vision-based cable-suspended load transport with two quadrotors. In 2017 IEEE international conference on robotics and automation, Singapore (pp. 5196–5202).

  17. Grassé, P. P. (1959). La reconstruction du nid et les coordinations interindividuelles chezBellicositermes natalensis etCubitermes sp. la théorie de la stigmergie: Essai d’interprétation du comportement des termites constructeurs. Insectes Sociaux, 6(1), 41–80.

    MathSciNet  Article  Google Scholar 

  18. Ikeura, R., Monden, H., & Inooka, H. (1994). Cooperative motion control of a robot and a human. In 3rd IEEE international workshop on robot and human communication, 1994. RO-MAN’94 Nagoya, Proceedings (pp. 112–117). IEEE.

  19. Kelly, I., & Keating, D. (1996) Flocking by the fusion of sonar and active infrared sensors on physical autonomous mobile robots. In Proceedings of the third international conference on mechatronics and machine vision in practice (Vol. 1, pp. 1–4).

  20. Khalil, H. K. (2001). Nonlinear systems (3rd ed.). Upper Saddle River: Prentice Hall.

    Google Scholar 

  21. Kube, C. R., & Bonabeau, E. (2000). Cooperative transport by ants and robots. Robotics and Autonomous Systems, 30(1–2), 85–101.

    Article  Google Scholar 

  22. Machado, M., Moreira, P., Flores, P., & Lankarani, H. M. (2012). Compliant contact force models in multibody dynamics: Evolution of the Hertz contact theory. Mechanism and Machine Theory, 53, 99–121.

    Article  Google Scholar 

  23. Manubens, M., Devaurs, D., Ros, L., & Cortés, J. (2013). Motion planning for 6-D manipulation with aerial towed-cable systems. In: 2013 robotics: Science and systems, Berlin, Germany.

  24. Marino, A. (2018). Distributed adaptive control of networked cooperative mobile manipulators. IEEE Transactions on Control Systems Technology, 26(5), 1646–1660.

    Article  Google Scholar 

  25. Mellinger, D., Shomin, M., Michael, N., & Kumar, V. (2013). Cooperative grasping and transport using multiple quadrotors. In Distributed autonomous robotic systems (pp. 545–558). Springer.

  26. Moosavian, A., Ali, S., Rastegari, R., & Papadopoulos, E. (2005). Multiple impedance control for space free-flying robots. Journal of Guidance, Control, and Dynamics, 28(5), 939–947.

    Article  Google Scholar 

  27. Nguyen, H. N., Park, S., & Lee, D. J. (2015). Aerial tool operation system using quadrotors as rotating thrust generators. In 2015 IEEE/RSJ international conference on intelligent robots and systems, Hamburg, Germany (pp. 1285–1291).

  28. Pereira, P. O., Herzog, M., & Dimarogonas, D. V. (2016). Slung load transportation with a single aerial vehicle and disturbance removal. In 2016 24th Mediterranean conference on control and automation (MED) (pp. 671–676). IEEE.

  29. Petitti, A., Franchi, A., Di Paola, D., & Rizzo, A. (2016). Decentralized motion control for cooperative manipulation with a team of networked mobile manipulators. In 2016 IEEE international conference on robotics and automation, Stockholm, Sweden (pp. 441–446).

  30. Prattichizzo, D., & Trinkle, J. C. (2008). Grasping. In B. Siciliano & O. Khatib (Eds.), Springer handbook of robotics (pp. 671–700). Springer.

  31. Rubenstein, M., Cabrera, A., Werfel, J., Habibi, G., McLurkin, J., & Nagpal, R. (2013). Collective transport of complex objects by simple robots: Theory and experiments. In 2013 international conference on autonomous agents and multi-agent systems (pp. 47–54).

  32. Schneider, S. A., & Cannon, R. H. (1992). Object impedance control for cooperative manipulation: Theory and experimental results. IEEE Transactions on Robotics and Automation, 8(3), 383–394.

    Article  Google Scholar 

  33. Sieber, D., & Hirche, S. (2018). Human-guided multirobot cooperative manipulation. IEEE Transactions on Control Systems Technology, 99, 1–18.

    Google Scholar 

  34. Somvanshi, P. R., Patel, A. K., Bhartiya, S., & Venkatesh, K. (2015). Implementation of integral feedback control in biological systems. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 7(5), 301–316.

    Google Scholar 

  35. Sreenath, K., & Kumar, V. (2013). Dynamics, control and planning for cooperative manipulation of payloads suspended by cables from multiple quadrotor robots. In Robotics: Science and systems, Berlin, Germany.

  36. Tagliabue, A., Kamel, M., Verling, S., Siegwart, R., & Nieto, J. (2016). Collaborative transportation using MAVs via passive force control. In 2017 IEEE international conference on robotics and automation, Singapore (pp. 5766–5773).

  37. Takubo, T., Arai, H., & Tanie, K. (2001). Human–robot cooperative handling using virtual nonholonomic constraint in 3-D space. In IEEE international conference on robotics and automation, 2001. Proceedings 2001 ICRA (Vol. 3, pp. 2680–2685). IEEE.

  38. Tognon, M., & Franchi, A. (2017). Dynamics, control, and estimation for aerial robots tethered by cables or bars. IEEE Transactions on Robotics, 33(4), 834–845.

    Article  Google Scholar 

  39. Tognon, M., Gabellieri, C., Pallottino, L., & Franchi, A. (2018). Aerial co-manipulation with cables: The role of internal force for equilibria, stability, and passivity. IEEE Robotics and Automation Letters, Special Issue on Aerial Manipulation, 3(3), 2577–2583. https://doi.org/10.1109/LRA.2018.2803811.

    Article  Google Scholar 

  40. Tognon, M., Tello Chávez, H. A., Gasparin, E., Sablé, Q., Bicego, D., Mallet, A., et al. (2019). A truly redundant aerial manipulator system with application to push-and-slide inspection in industrial plants. IEEE Robotics and Automation Letters, 4(2), 1846–1851. https://doi.org/10.1109/LRA.2019.2895880.

    Article  Google Scholar 

  41. Tsiamis, A., Verginis, C. K., Bechlioulis, C. P., & Kyriakopoulos, K. J. (2015). Cooperative manipulation exploiting only implicit communication. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 864–869). IEEE.

  42. Tuci, E., Groß, R., Trianni, V., Mondada, F., Bonani, M., & Dorigo, M. (2006). Cooperation through self-assembly in multi-robot systems. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 1(2), 115–150.

    Article  Google Scholar 

  43. Verginis, C. K., Nikou, A., & Dimarogonas, D. V. (2018). Communication-based decentralized cooperative object transportation using nonlinear model predictive control. In 2018 European control conference (ECC) (pp. 733–738). IEEE.

  44. Wang, Z., & Schwager, M. (2016). Force-amplifying n-robot transport system (force-ants) for cooperative planar manipulation without communication. The International Journal of Robotics Research, 35(13), 1564–1586.

    Article  Google Scholar 

  45. Yan, Z., Jouandeau, N., & Cherif, A. A. (2013). A survey and analysis of multi-robot coordination. International Journal of Advanced Robotic Systems, 10(12), 399.

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the ANR, Project ANR-17-CE33-0007 MuRoPhen.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Antonio Franchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 14932 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gabellieri, C., Tognon, M., Sanalitro, D. et al. A study on force-based collaboration in swarms. Swarm Intell 14, 57–82 (2020). https://doi.org/10.1007/s11721-019-00178-7

Download citation

Keywords

  • Multi-robot manipulation
  • Communication-less coordination
  • Admittance-controlled robots
  • Aerial robotic co-manipulation