Skip to main content

Closed-loop task allocation in robot swarms using inter-robot encounters

Abstract

In swarm robotics systems, coordinated behaviors emerge via local interactions among the robots as well as between robots and the environment. For a swarm of robots performing a set of pre-defined tasks in an enclosed region, this paper develops a decentralized mechanism to allocate tasks to each robot by leveraging the spatial interactions occurring among the robots as they move around the domain. With the aim of achieving a desired percentage of the swarm performing each task, the developed strategy allows individual robots to switch between different tasks with a certain probability when they encounter other robots in the region. We develop an analytical model to describe the inter-robot encounters occurring in a densely packed swarm of robots using ideas from the Enskog theory of dense gases and illustrate how the swarm can leverage this model to achieve the desired allocation levels. Furthermore, the inter-robot encounters enable the robots to measure the current allocation of the swarm, which is then used to regulate the rate at which they switch between tasks. This allows the swarm to speed up or slow down the rate of transitions between tasks depending on how far the current allocation is from the desired values, ultimately facilitating uninterrupted task execution by the robots. The methods introduced in this paper illustrate how naturally occurring encounters among robots in a swarm can be used to allocate tasks to the robots in a closed-loop manner. The developed algorithm is completely decentralized and can be deployed on minimalistic robots without the need for communication or a central coordinator. The performance of the algorithm is demonstrated on a swarm of real robots.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  • Agassounon, W., & Martinoli, A. (2002). Efficiency and robustness of threshold-based distributed allocation algorithms in multi-agent systems. In Proceedings of the first international joint conference on Autonomous agents and multiagent systems: part 3 (pp. 1090–1097), ACM.

  • Allen, M. P., Evans, G. T., Frenkel, D., & Mulder, B. (1993). Hard convex body fluids. Advances in Chemical Physics, 86(1), 166.

    Google Scholar 

  • Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2), 174–188.

    Article  Google Scholar 

  • Atkins, P., & De Paula, J. (2011). Physical chemistry for the life sciences. New York: Oxford University Press.

    Google Scholar 

  • Balinski, M. L. (1985). Signature methods for the assignment problem. Operations Research, 33(3), 527–536.

    MathSciNet  MATH  Article  Google Scholar 

  • Berman, S., Halász, Á., & Hsieh, M. (2016). Ant-inspired allocation: Top-down controller design for distributing a robot swarm among multiple tasks (pp. 243–274). Boca Raton: CRC Press.

    Google Scholar 

  • Berman, S., Halász, Á., Hsieh, M. A., & Kumar, V. (2009). Optimized stochastic policies for task allocation in swarms of robots. IEEE Transactions on Robotics, 25(4), 927–937. https://doi.org/10.1109/TRO.2009.2024997.

    Article  Google Scholar 

  • Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1–41.

    Article  Google Scholar 

  • Bullock, S., Crowder, R., & Pitonakova, L. (2016). Task allocation in foraging robot swarms: The role of information sharing. In Proceedings of the European conference on artificial life (Vol. 13, pp. 306–313), MIT Press.

  • Chapman, S., & Cowling, T. G. (1970). The mathematical theory of non-uniform gases: An account of the kinetic theory of viscosity, thermal conduction and diffusion in gases. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Charbonneau, D., Sasaki, T., & Dornhaus, A. (2017). Who needs ‘lazy’workers? Inactive workers act as a ‘reserve’labor force replacing active workers, but inactive workers are not replaced when they are removed. PLoS ONE, 12(9), e0184074.

    Article  Google Scholar 

  • Cheah, C. C., Hou, S. P., & Slotine, J. J. E. (2009). Region-based shape control for a swarm of robots. Automatica, 45(10), 2406–2411.

    MathSciNet  MATH  Article  Google Scholar 

  • Chiu, S. N., Stoyan, D., Kendall, W. S., & Mecke, J. (2013). Stochastic geometry and its applications. Hoboken: Wiley.

    MATH  Book  Google Scholar 

  • Cortes, J., Martinez, S., Karatas, T., & Bullo, F. (2004). Coverage control for mobile sensing networks. IEEE Transactions on Robotics and Automation, 20(2), 243–255.

    Article  Google Scholar 

  • Couzin, I. D. (2009). Collective cognition in animal groups. Trends in Cognitive Sciences, 13(1), 36–43.

    Article  Google Scholar 

  • Cutchis, P., Van Beijeren, H., Dorfman, J., & Mason, E. (1977). Enskog and van der Waals play hockey. American Journal of Physics, 45(10), 970–977.

    Article  Google Scholar 

  • Daley, D. J., & Vere-Jones, D. (2007). An introduction to the theory of point processes: Volume II: General theory and structure. New York: Springer.

    MATH  Google Scholar 

  • Dias, M. B., Zlot, R., Kalra, N., & Stentz, A. (2006). Market-based multirobot coordination: A survey and analysis. Proceedings of the IEEE, 94(7), 1257–1270.

    Article  Google Scholar 

  • Ducatelle, F., Förster, A., Di Caro, G. A., & Gambardella, L. M. (2009). New task allocation methods for robotic swarms. In 9th IEEE/RAS conference on autonomous robot systems and competitions.

  • Einwohner, T., & Alder, B. (1968). Molecular dynamics. VI. Free-path distributions and collision rates for hard-sphere and square-well molecules. The Journal of Chemical Physics, 49(4), 1458–1473.

    Article  Google Scholar 

  • Fox, D., Thrun, S., Burgard, W., & Dellaert, F. (2001). Particle filters for mobile robot localization. In A. Doucet, N. De Freitas, & N. Gordon (Eds.), Sequential Monte Carlo methods in practice. Statistics for engineering and information science (pp. 401–428). New York, NY: Springer.

    MATH  Google Scholar 

  • Franks, N. R., & Deneubourg, J. L. (1997). Self-organizing nest construction in ants: individual worker behaviour and the nest’s dynamics. Animal Behaviour, 54(4), 779–796.

    Article  Google Scholar 

  • Fukuda, T., Nakagawa, S., Kawauchi, Y., & Buss, M. (1988). Self organizing robots based on cell structures-CKBOT. In IEEE international workshop on intelligent robots 1988 (pp. 145–150). IEEE.

  • Gerkey, B. P., & Matarić, M. J. (2004). A formal analysis and taxonomy of task allocation in multi-robot systems. The International Journal of Robotics Research, 23(9), 939–954.

    Article  Google Scholar 

  • Goldberg, D., & Mataric, M. J. (1997). Interference as a tool for designing and evaluating multi-robot controllers. In Proceedings of AAAI-97 (pp. 637–642). AAAI Press.

  • Gordon, D. M. (1996). The organization of work in social insect colonies. Nature, 380, 14.

    Article  Google Scholar 

  • Gordon, D. M., & Mehdiabadi, N. J. (1999). Encounter rate and task allocation in harvester ants. Behavioral Ecology and Sociobiology, 45(5), 370–377. https://doi.org/10.1007/s002650050573.

    Article  Google Scholar 

  • Iocchi, L., Nardi, D., & Salerno, M. (2001). Reactivity and deliberation: A survey on multi-robot systems. In M. Hannebauer & J. Wendler (Eds.), Balancing reactivity and social deliberation in multi-agent systems (pp. 9–32). Berlin: Springer.

    MATH  Chapter  Google Scholar 

  • Jeans, J. (2009). An introduction to the kinetic theory of gases (p. 2009). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Jones, C., & Mataric, M. J. (2003). Adaptive division of labor in large-scale minimalist multi-robot systems. In Proceedings 2003 IEEE/RSJ international conference on intelligent robots and systems (IROS 2003) (Cat. No. 03CH37453) (Vol. 2, pp. 1969–1974). IEEE.

  • Jordan, M. (1995). Why the logistic function? A tutorial discussion on probabilities and neural networks. Technical report, Massachusetts Institute of Technology.

  • Khamis, A., Hussein, A., & Elmogy, A. (2015). Multi-robot task allocation: A review of the state-of-the-art (pp. 31–51). Cham: Springer. https://doi.org/10.1007/978-3-319-18299-5_2.

    Book  Google Scholar 

  • Krieger, M. J., Billeter, J. B., & Keller, L. (2000). Ant-like task allocation and recruitment in cooperative robots. Nature, 406(6799), 992.

    Article  Google Scholar 

  • Labella, T. H., Dorigo, M., & Deneubourg, J. L. (2006). Division of labor in a group of robots inspired by ants’ foraging behavior. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 1(1), 4–25.

    Article  Google Scholar 

  • Lavancier, F., & Møller, J. (2016). Modelling aggregation on the large scale and regularity on the small scale in spatial point pattern datasets. Scandinavian Journal of Statistics, 43(2), 587–609.

    MathSciNet  MATH  Article  Google Scholar 

  • Le Boudec, J. Y., McDonald, D., & Mundinger, J. (2007). A generic mean field convergence result for systems of interacting objects. In Fourth international conference on the quantitative evaluation of systems, 2007 (pp. 3–18). IEEE.

  • Lerman, K., Jones, C., Galstyan, A., & Matarić, M. J. (2006). Analysis of dynamic task allocation in multi-robot systems. The International Journal of Robotics Research, 25(3), 225–241.

    Article  Google Scholar 

  • Liu, Y., & Nejat, G. (2013). Robotic urban search and rescue: A survey from the control perspective. Journal of Intelligent & Robotic Systems, 72(2), 147–165.

    Article  Google Scholar 

  • Matérn, B. (2013). Spatial variation (Vol. 36). New York: Springer. https://doi.org/10.1007/978-0-387-96365-5.

    MATH  Book  Google Scholar 

  • Mather, T. W., & Ani Hsieh, M. (2011). Macroscopic modeling of stochastic deployment policies with time delays for robot ensembles. International Journal of Robotics Research, 30(5), 590–600.

    Article  Google Scholar 

  • Mayya, S., Pierpaoli, P., & Egerstedt, M. (2018). Voluntary retreat for decentralized interference reduction in robot swarms. arXiv:1812.02193

  • Mayya, S., Pierpaoli, P., Nair, G., & Egerstedt, M. (2017). Collisions as information sources in densely packed multi-robot systems under mean-field approximations. In Proceedings of robotics: Science and systems, Cambridge, Massachusetts. https://doi.org/10.15607/RSS.2017.XIII.044.

  • Mayya, S., Pierpaoli, P., Nair, G., & Egerstedt, M. (2019). Localization in densely packed swarms using interrobot collisions as a sensing modality. IEEE Transactions on Robotics, 35(1), 21–34.

    Article  Google Scholar 

  • Nam, C., & Shell, D. A. (2015). Assignment algorithms for modeling resource contention in multirobot task allocation. IEEE Transactions on Automation Science and Engineering, 12(3), 889–900.

    Article  Google Scholar 

  • Nunes, E., Manner, M., Mitiche, H., & Gini, M. (2017). A taxonomy for task allocation problems with temporal and ordering constraints. Robotics and Autonomous Systems, 90, 55–70.

    Article  Google Scholar 

  • Oster, G. F., & Wilson, E. O. (1979). Caste and ecology in the social insects. Princeton: Princeton University Press.

    Google Scholar 

  • Paik, S. T. (2014). Is the mean free path the mean of a distribution? American Journal of Physics, 82(6), 602–608.

    Article  Google Scholar 

  • Pickem, D., Glotfelter, P., Wang, L., Mote, M., Ames, A., Feron, E., et al. (2017). The Robotarium: A remotely accessible swarm robotics research testbed. In IEEE international conference on robotics and automation (ICRA), 2017 (pp. 1699–1706). IEEE.

  • Pini, G., Brutschy, A., Birattari, M., & Dorigo, M. (2009). Interference reduction through task partitioning in a robotic swarm. In Sixth international conference on informatics in control, automation and robotics-ICINCO (pp. 52–59). INSTICC Press.

  • Pratt, S. C. (2005). Quorum sensing by encounter rates in the ant Temnothorax albipennis. Behavioral Ecology, 16(2), 488–496.

    Article  Google Scholar 

  • Reif, F. (2009). Fundamentals of statistical and thermal physics. McGraw-Hill series in fundamentals of physics. Waveland Press. ISBN: 9781577666127.

  • Şahin, E. (2005). Swarm robotics: From sources of inspiration to domains of application. In E. Şahin & W. M. Spears (Eds.), Swarm robotics (pp. 10–20). Berlin: Springer.

    Chapter  Google Scholar 

  • Shell, D. A., Jones, C. V., & Matarić, M. J. (2005). Ergodic dynamics by design: A route to predictable multi-robot systems. In L. E. Parker, F. E. Schneider, & A. C. Schultz (Eds.), Multi-robot systems: From swarms to intelligent automata (Vol. III, pp. 291–297)., Springer Dordrecht: Netherlands.

    Chapter  Google Scholar 

  • Thrun, S., Fox, D., Burgard, W., & Dellaert, F. (2001). Robust Monte Carlo localization for mobile robots. Artificial Intelligence, 128(1–2), 99–141.

    MATH  Article  Google Scholar 

  • Wang, L., Ames, A. D., & Egerstedt, M. (2017). Safety barrier certificates for collisions-free multirobot systems. IEEE Transactions on Robotics, 33(3), 661–674.

    Article  Google Scholar 

  • Zavlanos, M. M., Spesivtsev, L., & Pappas, G. J. (2008). A distributed auction algorithm for the assignment problem. In 47th IEEE conference on decision and control, 2008: CDC 2008 (pp. 1212–1217). IEEE.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddharth Mayya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was sponsored by Grants Nos. 1531195 and 1544332 from the U.S. National Science Foundation.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 58218 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mayya, S., Wilson, S. & Egerstedt, M. Closed-loop task allocation in robot swarms using inter-robot encounters. Swarm Intell 13, 115–143 (2019). https://doi.org/10.1007/s11721-019-00166-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-019-00166-x

Keywords

  • Swarm robotics
  • Inter-robot encounters
  • Task allocation
  • Distributed systems