Skip to main content
Log in

The intelligent water drops algorithm: why it cannot be considered a novel algorithm

A brief discussion on the use of metaphors in optimization

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

In this article, we rigorously analyze the intelligent water drops (IWD) algorithm, a metaphor-based approach for the approximate solution of discrete optimization problems proposed by Shah-Hosseini (in: Proceedings of the 2007 congress on evolutionary computation (CEC 2007), IEEE Press, Piscataway, NJ, pp 3226–3231, 2007). We demonstrate that all main algorithmic components of IWD are simplifications or special cases of ant colony optimization (ACO), and therefore, IWD is simply a particular instantiation of ACO. We show that the natural metaphor of “water drops flowing in rivers removing the soil from the riverbed”, the source of inspiration of IWD, is unnecessary, misleading and based on unconvincing assumptions of river dynamics and soil erosion that lack a real scientific rationale. We carry out a detailed review of modifications and extensions proposed to IWD since its first publication in 2007. We find that research on IWD is for the most part misguided and that the vast majority of the ideas explored in the literature on IWD have been studied many years before in the context of ACO. Finally, we discuss the use of natural metaphors as a source of inspiration for optimization algorithms, which has become an extremely popular trend in the last 15 years, and propose some criteria to limit their usage to the cases in which the metaphor is indeed useful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. As explained in Dorigo et al. (1991a), positive feedback allows ants to generate a process that reinforces itself, that is, the higher the number of ants following a trail, the more attractive that trail becomes for being followed.

  2. The rule for selecting solution components, called transition rule, implemented during the stochastic solution construction varies among ACO variants.

  3. In some ACO implementations, the pheromone update can be interleaved with the solution construction (e.g., see (Gambardella and Dorigo 1995; Dorigo and Gambardella 1997b)), an example being the offline pheromone update implemented in ACS (Dorigo and Gambardella 1997b).

  4. Note that, even though this is highly counter-intuitive, the amount of soil that a water drop collects when adding a new solution component to the partial solution it is building is different from the amount of soil that is removed from the soil variable associated with the added component. For a detailed example, see the online supplementary material.

  5. The author calls heuristic undesirability to the inverse of the heuristic information used in ACO. For example, in the traveling salesman problem, ACO’s heuristic information is commonly defined as \(\eta _{ij} =1/ d_{ij}\), where \(d_{ij}\) indicates the distance between city i and city j. In IWD, the heuristic undesirability is, for the same problem, defined as \(\mathrm{HUD}_{ij}=d_{ij}\).

  6. Finding values for the parameters of stochastic algorithms that guarantee a good algorithm performance is known to be a non-trivial task. See Stützle et al. (2012) for a comprehensive review of how this problem has been studied in the ACO literature.

  7. ACS is one of the oldest and best performing ACO algorithms (Dorigo and Gambardella 1997b); its global update rule is called global pheromone trail updating rule.

  8. There are two versions of this component in IWD. In the first one (Shah-Hosseini 2007), the \(\rho \) parameter was defined in [0, 1], making Eqs. 10 and 9 identical. However, for unknown reasons, in a later publication (Shah-Hosseini 2009) the interval of variability of parameter \(\rho \) was changed to \([-1,0]\), leading to a somewhat different behavior of the global update procedure, as explained here.

  9. The GA’s community realized that proportionate selection is not best suited for optimization because it assumes only positive fitness values and cannot differentiate between small fitness differences. The linear (Baker 1987) and nonlinear (Goldberg and Deb 1991; Michalewicz 1992) ranking selection methods were introduced to alleviate these problems.

  10. For example, consider the metaphoric explanation of gravity by Einstein in terms of space–time grid warping caused by an object’s mass, or selfish genes in genetics to introduce the idea of organism differentiation within same species, or the terminology adopted in graph theory that includes terms such as tree, root, leaf, forest.

References

  • Alaya, I., Solnon, C., & Ghédira, K. (2007). Ant colony optimization for multi-objective optimization problems. In Proceedings of the 19th IEEE international conference on tools with artificial intelligence (ICTAI 2007) (Vol. 1, pp. 450–457) IEEE Computer Society Press, Los Alamitos, CA.

  • Alijla, B. O., Wong, L. P., Lim, C. P., Khader, A. T., & Al-Betar, M. A. (2014). A modified intelligent water drops algorithm and its application to optimization problems. Expert Systems with Applications, 41(15), 6555–6569.

    Google Scholar 

  • Askarzadeh, A. (2014). Bird mating optimizer: An optimization algorithm inspired by bird mating strategies. Communications in Nonlinear Science and Numerical Simulation, 19(4), 1213–1228.

    MathSciNet  Google Scholar 

  • Atashpaz-Gargari, E., & Lucas, C. (2007). Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition. In Proceedings of the 2007 congress on evolutionary computation (CEC 2007) (pp. 3226–3231).

  • Baker, J.E. (1987). Reducing bias and inefficiency in the selection algorithm. In: Goldberg DE, Lingle R (Eds.) Proceedings of the second international conference on genetic algorithms (ICGA’87), Lawrence Erlbaum Associates (Vol. 206, pp. 14–21).

  • Birattari, M., Balaprakash, P., & Dorigo, M. (2006). The ACO/F-RACE algorithm for combinatorial optimization under uncertainty. In K. F. Doerner, M. Gendreau, P. Greistorfer, W. J. Gutjahr, R. F. Hartl, & M. Reimann (Eds.), Metaheuristics: Progress in complex systems optimization, operations research/computer science interfaces series (Vol. 39, pp. 189–203). New York, NY: Springer.

    MATH  Google Scholar 

  • Birbil, Ş. I., & Fang, S. C. (2003). An electromagnetism-like mechanism for global optimization. Journal of Global Optimization, 25(3), 263–282.

    MathSciNet  MATH  Google Scholar 

  • Blum, C. (2005). Beam-ACO–hybridizing ant colony optimization with beam search: An application to open shop scheduling. Computers & Operations Research, 32(6), 1565–1591.

    MATH  Google Scholar 

  • Blum, C., & Dorigo, M. (2004). The hyper-cube framework for ant colony optimization. IEEE Transactions on Systems, Man, and Cybernetics: Part B, 34(2), 1161–1172.

    Google Scholar 

  • Booyavi, Z., Teymourian, E., Komaki, G., & Sheikh, S. (2014). An improved optimization method based on the intelligent water drops algorithm for the vehicle routing problem. In Proceedings of 2014 IEEE symposium on computational intelligence in production and logistics systems (CIPLS) (pp. 59–66), IEEE Press

  • Bullnheimer, B., Hartl, R. F., & Strauss, C. (1999). An improved ant system algorithm for the vehicle routing problem. Annals of Operations Research, 89, 319–328.

    MathSciNet  MATH  Google Scholar 

  • Campelo, F. (2017). Evolutionary computation bestiary. https://github.com/fcampelo/EC-Bestiary, version visited last on 22 January 2018

  • Colorni, A., Dorigo, M., & Maniezzo, V. (1992). Distributed optimization by ant colonies. In: F. J. Varela & P. Bourgine (Eds.) Proceedings of the first european conference on artificial life (pp. 134–142), MIT Press, Cambridge, MA

  • Cordón, O., de Viana, IF., Herrera, F., & Moreno, L. (2000). A new ACO model integrating evolutionary computation concepts: The best-worst ant system. In: M. Dorigo, et al. (Eds.) Abstract proceedings of ANTS 2000: From ant colonies to artificial ants: Second international workshop on ant algorithms, IRIDIA, Université Libre de Bruxelles, Belgium (pp. 22–29)

  • Corne, D., Dorigo, M., Glover, F., Dasgupta, D., Moscato, P., Poli, R., et al. (1999). New ideas in optimization. New York: McGraw Hill.

    Google Scholar 

  • Cuevas, E., Miguel, C., Zaldívar, D., & Pérez-Cisneros, M. (2013). A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Systems with Applications, 40(16), 6374–6384.

    Google Scholar 

  • Deneubourg, J. L., Aron, S., Goss, S., & Pasteels, J. M. (1990). The self-organizing exploratory pattern of the Argentine ant. Journal of Insect Behavior, 3(2), 159–168. https://doi.org/10.1007/BF01417909.

    Article  Google Scholar 

  • Dorigo, M. (1992). Optimization, learning and natural algorithms. PhD thesis, Dipartimento di Elettronica, Politecnico di Milano, Italy (in Italian)

  • Dorigo, M., & Di Caro, G. A. (1999). The ant colony optimization meta-heuristic. In D. Corne, M. Dorigo, & F. Glover (Eds.), New ideas in optimization (pp. 11–32). London, UK: McGraw Hill.

    Google Scholar 

  • Dorigo, M., & Gambardella, L. M. (1996). Ant Colony System. Tech. Rep. IRIDIA/96-05, IRIDIA, Université Libre de Bruxelles, Belgium

  • Dorigo, M., & Gambardella, L. M. (1997a). Ant colonies for the traveling salesman problem. BioSystems, 43(2), 73–81. https://doi.org/10.1016/S0303-2647(97)01708-5.

    Article  Google Scholar 

  • Dorigo, M., & Gambardella, L. M. (1997b). Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1), 53–66.

    Google Scholar 

  • Dorigo, M., Maniezzo, V., & Colorni, A. (1991a). The ant system: An autocatalytic optimizing process. Tech. Rep. 91-016 Revised, Dipartimento di Elettronica, Politecnico di Milano, Italy

  • Dorigo, M., Maniezzo, V., & Colorni, A. (1991b). Positive feedback as a search strategy. Tech. Rep. 91-016, Dipartimento di Elettronica, Politecnico di Milano, Italy

  • Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics: Part B, 26(1), 29–41.

    Google Scholar 

  • Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Cambridge, MA: MIT Press.

    MATH  Google Scholar 

  • Duan, H., Liu, S., & Wu, J. (2008). Air robot path planning based on intelligent water drops optimization. In Proceedings of the international joint conference on neural networks (IJCNN 2008 - Hong Kong) (pp. 1397–1401) IEEE.

  • Duan, H., Liu, S., & Wu, J. (2009). Novel intelligent water drops optimization approach to single UCAV smooth trajectory planning. Aerospace Science and Technology, 13(8), 442–449.

    Google Scholar 

  • Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In Proceedings of the sixth international symposium on micro machine and human science (pp. 39–43)

  • Erol, O. K., & Eksin, I. (2006). A new optimization method: Big bang-big crunch. Advances in Engineering Software, 37(2), 106–111.

    Google Scholar 

  • Eskandar, H., Sadollah, A., Bahreininejad, A., & Hamdi, M. (2012). Water cycle algorithm-a novel metaheuristic optimization method for solving constrained engineering optimization problems. Computers & Structures, 110, 151–166.

    Google Scholar 

  • Gambardella, L. M., & Dorigo, M. (1995). Ant-Q: A reinforcement learning approach to the traveling salesman problem. In: A. Prieditis & S. Russell (Eds.) Proceedings of the twelfth international conference on machine learning (ML-95) (pp. 252–260). Morgan Kaufmann Publishers, Palo Alto, CA.

  • Gambardella, L. M., & Dorigo, M. (1996). Solving symmetric and asymmetric TSPs by ant colonies. In T. Bäck, Fukuda & Z. Michalewicz (Eds.) Proceedings of the 1996 IEEE international conference on evolutionary computation (ICEC’96) (pp. 622–627). IEEE Press, Piscataway, NJ.

  • Gambardella, L. M., Taillard, É. D., & Dorigo, M. (1999). Ant colonies for the quadratic assignment problem. Journal of the Operational Research Society, 50(2), 167–176.

    MATH  Google Scholar 

  • Gandomi, A. H. (2014). Interior search algorithm (isa): A novel approach for global optimization. ISA Transactions, 53(4), 1168–1183.

    Google Scholar 

  • Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm: Harmony search. Journal of Simulation, 76(2), 60–68.

    Google Scholar 

  • Gendreau, M., & Potvin, J. Y. (Eds.). (2010). Handbook of Metaheuristics, International Series in Operations Research & Management Science (2nd ed., Vol. 146). New York, NY: Springer.

  • Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Boston, MA: Addison-Wesley.

    MATH  Google Scholar 

  • Goldberg, D. E., & Deb, K. (1991). A comparative analysis of selection schemes used in genetic algorithms. In G. J. E. Rawlins (Ed.), Foundations of genetic algorithms (Vol. 1, pp. 69–93). Elsevier.

  • Guntsch, M., & Middendorf, M. (2002). A population based approach for ACO. In S. Cagnoni et al. (Eds.) Applications of evolutionary computing, proceedings of evoworkshops 2002, Springer, Heidelberg, Germany, Lecture Notes in Computer Science, vol 2279, pp 71–80

  • Hatamlou, A. (2013). Black hole: A new heuristic optimization approach for data clustering. Information Sciences, 222, 175–184.

    MathSciNet  Google Scholar 

  • Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press.

    Google Scholar 

  • Joslin, D. E., & Clements, D. P. (1999). Squeaky wheel optimization. Journal of Artificial Intelligence Research, 10, 353–373.

    MathSciNet  MATH  Google Scholar 

  • Kacprzyk, J., & Pedrycz, W. (Eds.). (2015). Springer handbook of computational intelligence. Heidelberg: Springer.

    MATH  Google Scholar 

  • Kaveh, A., & Talatahari, S. (2010). A novel heuristic optimization method: Charged system search. Acta Mechanica, 213(3–4), 267–289.

    MATH  Google Scholar 

  • Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220, 671–680.

    MathSciNet  MATH  Google Scholar 

  • Maniezzo, V. (1999). Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem. INFORMS Journal on Computing, 11(4), 358–369.

    MathSciNet  MATH  Google Scholar 

  • Maniezzo, V., & Carbonaro, A. (2000). An ANTS heuristic for the frequency assignment problem. Future Generation Computer Systems, 16(8), 927–935.

    Google Scholar 

  • Maniezzo, V., & Colorni, A. (1999). The Ant System applied to the quadratic assignment problem. IEEE Transactions on Data and Knowledge Engineering, 11(5), 769–778.

    Google Scholar 

  • Mehrabian, A. R., & Lucas, C. (2006). A novel numerical optimization algorithm inspired from weed colonization. Ecological informatics, 1(4), 355–366.

    Google Scholar 

  • Melvin, G., Dodd, T. J., & Groß, R. (2012). Why ‘GSA: A gravitational search algorithm’ is not genuinely based on the law of gravity. Natural Computing, 11(4), 719–720.

    MathSciNet  MATH  Google Scholar 

  • Merritt, W. S., Letcher, R. A., & Jakeman, A. J. (2003). A review of erosion and sediment transport models. Environmental Modelling & Software, 18(8–9), 761–799.

    Google Scholar 

  • Michalewicz, Z. (1992). Genetic algorithms + data structures = evolution program. Berlin: Springer.

    MATH  Google Scholar 

  • Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67.

    Google Scholar 

  • Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.

    Google Scholar 

  • Msallam, M. M., & Hamdan, M. (2011). Improved intelligent water drops algorithm using adaptive schema. International Journal of Bio-Inspired Computation, 3(2), 103–111.

    Google Scholar 

  • Niu, S., Ong, S. K., & Nee, A. Y. (2012). An improved intelligent water drops algorithm for achieving optimal job-shop scheduling solutions. International Journal of Production Research, 50(15), 4192–4205.

    Google Scholar 

  • Passino, K. M. (2002). Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Systems, 22(3), 52–67.

    MathSciNet  Google Scholar 

  • Piotrowski, A. P., Napiorkowski, J. J., & Rowinski, P. M. (2014). How novel is the “novel” black hole optimization approach? Information Sciences, 267, 191–200.

    Google Scholar 

  • Rao, R. V., Savsani, V. J., & Vakharia, D. (2011). Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303–315.

    Google Scholar 

  • Ray, T., & Liew, K. M. (2003). Society and civilization: An optimization algorithm based on the simulation of social behavior. IEEE Transactions on Evolutionary Computation, 7(4), 386–396.

    Google Scholar 

  • Shah-Hosseini, H. (2007). Problem solving by intelligent water drops. In Proceedings of the 2007 congress on evolutionary computation (CEC 2007) (pp. 3226–3231). IEEE, IEEE Press, Piscataway, NJ

  • Shah-Hosseini, H. (2008). Intelligent water drops algorithm: A new optimization method for solving the multiple knapsack problem. International Journal of Intelligent Computing and Cybernetics, 1(2), 193–212.

    MathSciNet  MATH  Google Scholar 

  • Shah-Hosseini, H. (2009). The intelligent water drops algorithm: A nature-inspired swarm-based optimization algorithm. International Journal of Bio-Inspired Computation, 1(1–2), 71–79.

    Google Scholar 

  • Simon, D. (2008). Biogeography-based optimization. IEEE Transactions on Evolutionary Computation, 12(6), 702–713.

    Google Scholar 

  • Simon, D., Rarick, R., Ergezer, M., & Du, D. (2011). Analytical and numerical comparisons of biogeography-based optimization and genetic algorithms. Information Sciences, 181(7), 1224–1248.

    MATH  Google Scholar 

  • Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains. European Journal of Operational Research, 185(3), 1155–1173. https://doi.org/10.1016/j.ejor.2006.06.046.

    Article  MathSciNet  MATH  Google Scholar 

  • Sörensen, K. (2015). Metaheuristics–the metaphor exposed. International Transactions in Operational Research, 22(1), 3–18. https://doi.org/10.1111/itor.12001.

    Article  MathSciNet  MATH  Google Scholar 

  • Stützle, T., & Hoos, H. H. (1996). Improving the Ant System: A detailed report on the \({\mathscr {MAX}}\)\({\mathscr {MIN}}\) Ant System. Tech. Rep. AIDA–96–12, FG Intellektik, FB Informatik, TU Darmstadt, Germany

  • Stützle, T., & Hoos, H. H. (1997). The \({\mathscr {MAX}}\)\({\mathscr {MIN}}\) ant system and local search for the traveling salesman problem. In T. Bäck, Z. Michalewicz & X. Yao, (Eds.) Proceedings of the 1997 IEEE international conference on evolutionary computation (ICEC’97) (pp. 309–314). IEEE Press, Piscataway, NJ.

  • Stützle, T., & Hoos, H. H. (2000). \({\mathscr {MAX}}\)\({\mathscr {MIN}}\) ant system. Future Generation Computer Systems, 16(8), 889–914.

    Google Scholar 

  • Stützle, T., López-Ibáñez, M., Pellegrini, P., Maur, M., Montes de Oca, M. A., Birattari, M., et al. (2012). Parameter adaptation in ant colony optimization. In Y. Hamadi, E. Monfroy, & F. Saubion (Eds.), Autonomous Search (pp. 191–215). Berlin: Springer. https://doi.org/10.1007/978-3-642-21434-9_8.

    Chapter  Google Scholar 

  • Teymourian, E., Kayvanfar, V., Komaki, G. M., & Khodarahmi, M. (2016a). An enhanced intelligent water drops algorithm for scheduling of an agile manufacturing system. International Journal of Information Technology & Decision Making, 15(02), 239–266.

    Google Scholar 

  • Teymourian, E., Kayvanfar, V., Komaki, G. M., & Zandieh, M. (2016b). Enhanced intelligent water drops and cuckoo search algorithms for solving the capacitated vehicle routing problem. Information Sciences, 334, 354–378.

    Google Scholar 

  • Weyland, D. (2010). A rigorous analysis of the harmony search algorithm: How the research community can be misled by a “novel” methodology. International Journal of Applied Metaheuristic Computing, 12(2), 50–60.

    Google Scholar 

  • Yang, X. S. (2009). Firefly algorithms for multimodal optimization. In International symposium on stochastic algorithms (pp. 169–178). Springer

  • Yang, X. S. (2012). Flower pollination algorithm for global optimization. In International conference on unconventional computing and natural computation (pp. 240–249). Springer

Download references

Acknowledgements

Marco Dorigo and Thomas Stützle acknowledge support from the Belgian FRS-FNRS, of which they are Research Directors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Leonardo Camacho-Villalón.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ods 21 KB)

Supplementary material 2 (pdf 258 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camacho-Villalón, C.L., Dorigo, M. & Stützle, T. The intelligent water drops algorithm: why it cannot be considered a novel algorithm. Swarm Intell 13, 173–192 (2019). https://doi.org/10.1007/s11721-019-00165-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-019-00165-y

Keywords

Navigation