Swarm Intelligence

, Volume 13, Issue 2, pp 95–114 | Cite as

Long-term memory-induced synchronisation can impair collective performance in congested systems

  • F. Saffre
  • G. Gianini
  • H. HildmannEmail author
  • J. Davies
  • S. Bullock
  • E. Damiani
  • J.-L. Deneubourg


We investigate the hypothesis that long-term memory in populations of agents can lead to counterproductive emergent properties at the system level. Our investigation is framed in the context of a discrete, one-dimensional road-traffic congestion model: we investigate the influence of simple cognition in a population of rational commuter agents that use memory to optimise their departure time, taking into account congestion delays on previous trips. Our results differ from the well-known minority game in that crowded slots do not carry any explicit penalty. We use Markov chain analysis to uncover fundamental properties of this model and then use the gained insight as a benchmark. Then, using Monte Carlo simulations, we study two scenarios: one in which “myopic” agents only remember the outcome (delay) of their latest commute, and one in which their memory is practically infinite. We show that there exists a trade-off, whereby myopic memory reduces congestion but increases uncertainty, while infinite memory does the opposite. We evaluate the performance against the optimal distribution of departure times (i.e. where both delay and uncertainty are minimised simultaneously). This optimal but unstable distribution is identified using a genetic algorithm.


Multi-agent Congestion Synchronisation Memory Emergence Optimisation Markov chain Monte Carlo simulation Genetic algorithms 



  1. Arthur, W. B. (1994). Inductive reasoning and bounded rationality. The American economic review, 84(2), 406–411.Google Scholar
  2. Bellomo, N., & Dogbe, C. (2011). On the modeling of traffic and crowds: A survey of models, speculations, and perspectives. SIAM Review, 53(3), 409–463.MathSciNetCrossRefzbMATHGoogle Scholar
  3. Bose, S. N. (1920). Plancks Gesetz und Lichtquantenhypothese. Zeitschrift für Physik (in German), 26, 178–181.CrossRefzbMATHGoogle Scholar
  4. Cavagna, A. (1999). Irrelevance of memory in the minority game. Physical Review E, 59(4), R3783.CrossRefGoogle Scholar
  5. Challet, D. (2006). Coolen, acc: The mathematical theory of minority games. Statistical mechanics of interacting agents. Journal of Economics, 88(3), 311–314.MathSciNetCrossRefGoogle Scholar
  6. Challet, D., & Marsili, M. (1999). Phase transition and symmetry breaking in the minority game. Physical Review E, 60(6), R6271.CrossRefGoogle Scholar
  7. Challet, D., & Zhang, Y.-C. (1997). Emergence of cooperation and organization in an evolutionary game. Physica A: Statistical Mechanics and its Applications, 246(3–4), 407–418.CrossRefGoogle Scholar
  8. Challet, D., & Zhang, Y.-C. (1998). On the minority game: Analytical and numerical studies. Physica A: Statistical Mechanics and its applications, 256(3–4), 514–532.CrossRefGoogle Scholar
  9. Challet, D., Marsili, M., & Zecchina, R. (2000). Statistical mechanics of systems with heterogeneous agents: Minority games. Physical Review Letters, 84(8), 1824.CrossRefGoogle Scholar
  10. Challet, D., Marsili, M., Zhang, Y.-C., et al. (2013). Minority games: Interacting agents in financial markets. OUP Catalogue.Google Scholar
  11. Chowdhury, D., Santen, L., & Schadschneider, A. (2000). Statistical physics of vehicular traffic and some related systems., Physics reports Amsterdam: Elsevier.CrossRefGoogle Scholar
  12. Chuo, H.S.E., Tan, M.K., Chua, B.L., Chin, R.K.Y., Teo, K.T.K. (2016). Computation of cell transmission model for congestion and recovery traffic flow. In 2016 IEEE international conference on consumer electronics-Asia (ICCE-Asia) (pp. 1–4).
  13. Daganzo, C., & Berkeley, U. C. (1994). The cell transmission model: Network traffic. UC Berkeley: Institute of Transportation Studies.Google Scholar
  14. Daganzo, C.F. (1994). The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory. Transportation Research Part B: Methodological, 28(4):269–287.
  15. Damiani, E., D’Antona, O., Marra, V., & Palombi, F. (2009) From combinatorics to philosophy: The legacy of G.-C. Rota. Springer, Incorporated, 1st edn. ISBN 0387887520, 9780387887524.Google Scholar
  16. d’Aquin, M., Davies, J., & Motta, E. (2015). Smart cities’ data: Challenges and opportunities for semantic technologies. IEEE Internet Computing, 19(6), 66–70. ISSN 1089-7801.CrossRefGoogle Scholar
  17. Davies, J., & Fisher, M. (2015). Internet of things—why now? Institute of Telecommunications Professionals, 9(3), 35–42.Google Scholar
  18. Deutsch, A., Theraulaz, G., & Vicsek, T. (2012). Collective motion in biological systems. Interface Focus, 2(6), 689–692. ISSN 2042-8898.
  19. Einstein, A. (1924). Quantentheorie des einatomigen idealen Gases (pp. 261–267). Sitzungsber. Kgl. Preuss. Akad. Wiss. (in German).Google Scholar
  20. Fermi, E. (1926). Sulla quantizzazione del gas perfetto monoatomico. Rendiconti Lincei (In Italian), 3, 145–149.zbMATHGoogle Scholar
  21. Helbing, D. (2001). Traffic and related self-driven many-particle systems. College Park: American Physical Society.CrossRefGoogle Scholar
  22. Johnson, N. F., Hart, M., & Hui, P. M. (1999). Crowd effects and volatility in markets with competing agents. Physica A: Statistical Mechanics and its Applications, 269(1), 1–8.CrossRefGoogle Scholar
  23. Johnson, N. L., & Kotz, S. (1977). Urn models and their application: An approach to modern discrete probability theory. Wiley series in probability and statistics: Applied probability and statistics section. Wiley.Google Scholar
  24. Kerner, B.S., & Rehborn, H. (1997). Experimental properties of phase transitions in traffic flow. Phys. Rev. Lett., 79, 4030–4033. 10.1103/PhysRevLett. 79.4030.
  25. Kerner, B. S. (2009). Introduction to modern traffic flow theory and control: The long road to three-phase traffic theory. Berlin: Springer. ISBN 9783642026058.CrossRefzbMATHGoogle Scholar
  26. Mahmassani, H.S., & Chang, G.-L. (1986). Experiments with departure time choice dynamics of urban commuters. Transportation Research Part B: Methodological, 20(4), 297–320. ISSN 0191-2615.
  27. Mahmoud, H. (2008). Pólya urn models. Boca Raton: CRC.CrossRefzbMATHGoogle Scholar
  28. Marsili, M., Challet, D., & Zecchina, R. (2000). Exact solution of a modified El Farol’s bar problem: Efficiency and the role of market impact. Physica A: Statistical Mechanics and its Applications, 280(3–4), 522–553.CrossRefGoogle Scholar
  29. Maxwell, J. C. (1879). On Boltzmann’s theorem on the average distribution of energy in a system of material points. Printed at the University Press; and sold by Deighton, Bell and Company and Macmillan and Company Cambridge; Bell and Sons, London.Google Scholar
  30. Maxwell, J. C. (1890). Illustrations of the dynamic theory of gases (1867). In J. C. Maxwell (Ed.), The scientific papers of James Clerk Maxwell (Vol. 1). Sacramento: Creative Media Partners, LLC.Google Scholar
  31. Quill, E. (2008). Unclogging urban arteries. Science, 319(5864):750–751. ISSN 0036-8075.
  32. Savit, R., Manuca, R., & Riolo, R. (1999). Adaptive competition, market efficiency, and phase transitions. Physical Review Letters, 82(10), 2203.CrossRefGoogle Scholar
  33. Schadschneider, A., Klingsch, W., Klüpfel, H., Kretz, T., Rogsch, C. & Seyfried, A. (2009). Evacuation dynamics: Empirical results, modeling and applications (pp. 3142–3176) New York: Springer. ISBN 978-0-387-30440-3.Google Scholar
  34. Schreckenberg, M., & Selten, R. (2013). Human Behaviour and Traffic Networks. SpringerLink: Bücher. Berlin: Springer. ISBN 9783662078099.Google Scholar
  35. Sharp, D.H. (1984). An overview of Rayleigh–Taylor instability. Physica D: Nonlinear Phenomena, 12(1), 3–18. ISSN 0167-2789. DOIurl URL
  36. Small, K.A. (1982). The scheduling of consumer activities: Work trips. The American Economic Review, 72(3): 467–479. ISSN 00028282. URL
  37. Treiber, M., & Kesting, A. (2012). Traffic flow dynamics: Data models and simulation. Berlin: Springer. ISBN 9783642324604.Google Scholar
  38. Vickrey, William S. (1969). Congestion theory and transport investment. The American Economic Review, 59(2), 251–260. ISSN 00028282.
  39. Vicsek, T., & Zafeiris, A. (2012). Collective motion. Physics Reports, 517(34):71–140. ISSN 0370-1573. Collective motion.
  40. Wahle, J., Neubert, L., & Schreckenberg, M. (1999). Modeling and simulation of traffic flow. Computer Physics Communications, 121:402–405. ISSN 0010-4655. URL Proceedings of the Europhysics conference on computational physics CCP 1998.
  41. Xiao, Y., & Lo, H. K. (2016). Day-to-day departure time modeling under social network influence. Transportation Research Part B: Methodological, 92, Part A:54–72. ISSN 0191-2615. Special issue: Day-to-day dynamics in transportation networks.
  42. Young, H.D., Freedman, R.A., & Ford, A.L. (2015). University Physics with Modern Physics. Pearson. ISBN 9780133977981.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.EBTIC (Emirates ICT Innovation Centre)Khalifa UniversityAbu DhabiUAE
  2. 2.BT Applied ResearchAdastral ParkMartlesham HeathUK
  3. 3.Department of Computer ScienceUniversità degli Studi di MilanoCremaItaly
  4. 4.BrainCreatorsAmsterdamThe Netherlands
  5. 5.UC3M (Universidad Carlos III de Madrid)Léganes (Madrid)Spain
  6. 6.TNOThe HagueThe Netherlands
  7. 7.Department of Computer ScienceUniversity of BristolBristolUK
  8. 8.Khalifa University of Science and TechnologyAbu DhabiUAE
  9. 9.Université Libre de Bruxelles, Unité d’Ecologie SocialeBrusselsBelgium

Personalised recommendations