Informative and misinformative interactions in a school of fish

Abstract

Quantifying distributed information processing is crucial to understanding collective motion in animal groups. Recent studies have begun to apply rigorous methods based on information theory to quantify such distributed computation. Following this perspective, we use transfer entropy to quantify dynamic information flows locally in space and time across a school of fish during directional changes around a circular tank, i.e., U-turns. This analysis reveals peaks in information flows during collective U-turns and identifies two different flows: an informative flow (positive transfer entropy) from fish that have already turned to fish that are turning, and a misinformative flow (negative transfer entropy) from fish that have not turned yet to fish that are turning. We also reveal that the information flows are related to relative position and alignment between fish and identify spatial patterns of information and misinformation cascades. This study offers several methodological contributions and we expect further application of these methodologies to reveal intricacies of self-organisation in other animal groups and active matter in general.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Notes

  1. 1.

    With that said, we have also shown that techniques employed in this study are also successful in identifying information flows in groups with smoother motion dynamics (Wang et al. 2012; Miller et al. 2014).

References

  1. Albantakis, L., Hintze, A., Koch, C., Adami, C., & Tononi, G. (2014). Evolution of integrated causal structures in animats exposed to environments of increasing complexity. PLOS Computational Biology, 10(12), 1–19.

    Google Scholar 

  2. Attanasi, A., Cavagna, A., Del Castello, L., Giardina, I., Grigera, T. S., Jelić, A., et al. (2014a). Information transfer and behavioural inertia in starling flocks. Nature Physics, 10(9), 691–696.

    Google Scholar 

  3. Attanasi, A., Cavagna, A., Del Castello, L., Giardina, I., Jelic, A., Melillo, S., et al. (2015). Emergence of collective changes in travel direction of starling flocks from individual birds’ fluctuations. Journal of The Royal Society Interface, 12(108), 20150319.

    Google Scholar 

  4. Attanasi, A., Cavagna, A., Del Castello, L., Giardina, I., Melillo, S., Parisi, L., et al. (2014b). Collective behaviour without collective order in wild swarms of midges. PLOS Computational Biology, 10(7), 1–10.

    Google Scholar 

  5. Ay, N., & Polani, D. (2008). Information flows in causal networks. Advances in Complex Systems, 11(01), 17–41.

    MathSciNet  MATH  Google Scholar 

  6. Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., et al. (2008). Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proceedings of the National Academy of Sciences, 105(4), 1232–1237.

    Google Scholar 

  7. Barnett, L., Barrett, A. B., & Seth, A. K. (2009). Granger causality and transfer entropy are equivalent for gaussian variables. Physical Review Letters, 103, 238701.

    Google Scholar 

  8. Barnett, L., & Bossomaier, T. (2012). Transfer entropy as a Log-Likelihood ratio. Physical Review Letters, 109, 138105.

    Google Scholar 

  9. Barnett, L., Lizier, J. T., Harré, M., Seth, A. K., & Bossomaier, T. (2013). Information flow in a kinetic ising model peaks in the disordered phase. Physical Review Letters, 111(17), 177203.

    Google Scholar 

  10. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B (Methodological), 57(1), 289–300.

    MathSciNet  MATH  Google Scholar 

  11. Bialek, W., Cavagna, A., Giardina, I., Mora, T., Silvestri, E., Viale, M., et al. (2012). Statistical mechanics for natural flocks of birds. Proceedings of the National Academy of Sciences, 109(13), 4786–4791.

    Google Scholar 

  12. Boedecker, J., Obst, O., Lizier, J. T., Mayer, N. M., & Asada, M. (2012). Information processing in echo state networks at the edge of chaos. Theory in Biosciences, 131(3), 205–213.

    Google Scholar 

  13. Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From natural to artificial systems. Oxford: Oxford University Press.

    Google Scholar 

  14. Buhl, J., & Rogers, S. (2016). Mechanisms underpinning aggregation and collective movement by insect groups. Current Opinion in Insect Science, 15, 125–130.

    Google Scholar 

  15. Buhl, J., Sumpter, D. J. T., Couzin, I. D., Hale, J. J., Despland, E., Miller, E. R., et al. (2006). From disorder to order in marching locusts. Science, 312(5778), 1402–1406.

    Google Scholar 

  16. Buhl, J., Sword, G. A., Clissold, F. J., & Simpson, S. J. (2010). Group structure in locust migratory bands. Behavioral Ecology and Sociobiology, 65(2), 265–273.

    Google Scholar 

  17. Butail, S., Ladu, F., Spinello, D., & Porfiri, M. (2014). Information flow in animal-robot interactions. Entropy, 16(3), 1315–1330.

    Google Scholar 

  18. Butail, S., Mwaffo, V., & Porfiri, M. (2016). Model-free information-theoretic approach to infer leadership in pairs of zebrafish. Physical Review E, 93(4), 042411.

    Google Scholar 

  19. Calovi, D. S., Litchinko, A., Lecheval, V., Lopez, U., Pérez Escudero, A., Chaté, H., et al. (2018). Disentangling and modeling interactions in fish with burst-and-coast swimming reveal distinct alignment and attraction behaviors. PLOS Computational Biology, 14(1), 1–28.

    Google Scholar 

  20. Calovi, D. S., Lopez, U., Schuhmacher, P., Chaté, H., Sire, C., & Theraulaz, G. (2015). Collective response to perturbations in a data-driven fish school model. Journal of The Royal Society Interface, 12(104), 20141362.

    Google Scholar 

  21. Cavagna, A., Giardina, I., & Ginelli, F. (2013a). Boundary information inflow enhances correlation in flocking. Physical Review Letters, 110(16), 168107.

    Google Scholar 

  22. Cavagna, A., Queirós, S. M. D., Giardina, I., Stefanini, F., & Viale, M. (2013b). Diffusion of individual birds in starling flocks. Proceedings of the Royal Society of London B: Biological Sciences, 280(1756), 20122484.

    Google Scholar 

  23. Chicharro, D., & Ledberg, A. (2012). When two become one: The limits of causality analysis of brain dynamics. PLOS ONE, 7(3), 1–16.

    Google Scholar 

  24. Cliff, O. M., Lizier, J. T., Wang, X. R., Wang, P., Obst, O., & Prokopenko, M. (2017). Quantifying long-range interactions and coherent structure in multi-agent dynamics. Artificial Life, 23(1), 34–57.

    Google Scholar 

  25. Couzin, I. D. (2009). Collective cognition in animal groups. Trends in Cognitive Sciences, 13(1), 36–43.

    Google Scholar 

  26. Cover, T. M., & Thomas, J. A. (2006). Elements of Information Theory. New York: Wiley-Interscience.

    Google Scholar 

  27. Crosato, E., Spinney, R. E., Nigmatullin, R., Lizier, J. T., & Prokopenko, M. (2018). Thermodynamics and computation during collective motion near criticality. Physical Review E, 97, 012120.

    Google Scholar 

  28. Dimitriadis, S., Sun, Y., Laskaris, N., Thakor, N., & Bezerianos, A. (2016). Revealing cross-frequency causal interactions during a mental arithmetic task through symbolic transfer entropy: A novel vector-quantization approach. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(10), 1017–1028.

    Google Scholar 

  29. Faes, L., Marinazzo, D., Montalto, A., & Nollo, G. (2014). Lag-specific transfer entropy as a tool to assess cardiovascular and cardiorespiratory information transfer. IEEE Transactions on Biomedical Engineering, 61(10), 2556–2568.

    Google Scholar 

  30. Faes, L., Nollo, G., & Porta, A. (2011). Information-based detection of nonlinear granger causality in multivariate processes via a nonuniform embedding technique. Physical Review E, 83(5), 051112.

    Google Scholar 

  31. Faes, L., & Porta, A. (2014). Conditional Entropy-Based evaluation of information dynamics in physiological systems. In M. Wibral, R. Vicente, & J. T. Lizier (Eds.), Directed information measures in neuroscience, understanding complex systems (pp. 61–86). Berlin: Springer.

    Google Scholar 

  32. Fano, R. M. (1961). Transmission of information: A statistical theory of communications. Cambridge, MA: M.I.T Press.

    Google Scholar 

  33. Feldman, D. P., McTague, C. S., & Crutchfield, J. P. (2008). The organization of intrinsic computation: Complexity-entropy diagrams and the diversity of natural information processing. Chaos, 18(4), 043106.

    MathSciNet  Google Scholar 

  34. Fourcassié, V., Dussutour, A., & Deneubourg, J. L. (2010). Ant traffic rules. The Journal of Experimental Biology, 213(14), 2357–2363.

    Google Scholar 

  35. Gautrais, J., Ginelli, F., Fournier, R., Blanco, S., Soria, M., Chaté, H., et al. (2012). Deciphering interactions in moving animal groups. PLOS Computational Biology, 8(9), 1–11.

    MathSciNet  Google Scholar 

  36. Geweke, J. (1982). Measurement of linear dependence and feedback between multiple time series. Journal of the American Statistical Association, 77(378), 304–313.

    MathSciNet  MATH  Google Scholar 

  37. Giardina, I. (2008). Collective behavior in animal groups: Theoretical models and empirical studies. Human Frontier Science Program Journal, 2(4), 205–219.

    Google Scholar 

  38. Ginelli, F., Peruani, F., Pillot, M. H., Chaté, H., Theraulaz, G., & Bon, R. (2015). Intermittent collective dynamics emerge from conflicting imperatives in sheep herds. Proceedings of the National Academy of Sciences, 112(41), 12729–12734.

    Google Scholar 

  39. Gómez, C., Lizier, J. T., Schaum, M., Wollstadt, P., Grützner, C., Uhlhaas, P., et al. (2014). Reduced predictable information in brain signals in autism spectrum disorder. Frontiers in Neuroinformatics, 8, 9.

    Google Scholar 

  40. Herbert-Read, J. E., Buhl, J., Hu, F., Ward, A. J., & Sumpter, D. J. (2015). Initiation and spread of escape waves within animal groups. Royal Society open science, 2(4), 140355.

    Google Scholar 

  41. Herbert-Read, J. E., Perna, A., Mann, R. P., Schaerf, T. M., Sumpter, D. J. T., & Ward, A. J. W. (2011). Inferring the rules of interaction of shoaling fish. Proceedings of the National Academy of Sciences, 108(46), 18726–18731.

    Google Scholar 

  42. James, R. G., Barnett, N., & Crutchfield, J. P. (2016). Information flows? A critique of transfer entropies. Physical Review Letters, 116(23), 238701.

    MathSciNet  Google Scholar 

  43. Jeanson, R., Deneubourg, J. L., & Theraulaz, G. (2004). Discrete dragline attachment induces aggregation in spiderlings of a solitary species. Animal Behaviour, 67(3), 531–537.

    Google Scholar 

  44. Jeanson, R., Rivault, C., Deneubourg, J. L., Blanco, S., Fournier, R., Jost, C., et al. (2005). Self-organized aggregation in cockroaches. Animal Behaviour, 69(1), 169–180.

    Google Scholar 

  45. Jiang, L., Giuggioli, L., Perna, A., Escobedo, R., Lecheval, V., Sire, C., et al. (2017). Identifying influential neighbors in animal flocking. PLOS Computational Biology, 13(11), 1–32.

    Google Scholar 

  46. Katz, Y., Tunstrøm, K., Ioannou, C. C., Huepe, C., & Couzin, I. D. (2011). Inferring the structure and dynamics of interactions in schooling fish. Proceedings of the National Academy of Sciences, 108(46), 18720–18725.

    Google Scholar 

  47. Khadem, A., Hossein-Zadeh, G. A., & Khorrami, A. (2016). Long-range reduced predictive information transfers of autistic youths in EEG sensor-space during face processing. Brain topography, 29(2), 283–295.

    Google Scholar 

  48. Khuong, A., Gautrais, J., Perna, A., Sbaï, C., Combe, M., Kuntz, P., et al. (2016). Stigmergic construction and topochemical information shape ant nest architecture. Proceedings of the National Academy of Sciences, 113(5), 1303–1308.

    Google Scholar 

  49. Ladu, F., Mwaffo, V., Li, J., Macrì, S., & Porfiri, M. (2015). Acute caffeine administration affects zebrafish response to a robotic stimulus. Behavioural Brain Research, 289, 48–54.

    Google Scholar 

  50. Langton, C. G. (1990). Computation at the edge of chaos: Phase transitions and emergent computation. Physica D, 42(1–3), 12–37.

    MathSciNet  Google Scholar 

  51. Larson, L. (1983). The symmetric derivative. Transactions of the American Mathematical Society, 277(2), 589–599.

    MathSciNet  MATH  Google Scholar 

  52. Lecheval, V., Jiang, L., Tichit, P., Sire, C., Hemelrijk, C. K., & Theraulaz, G. (2017). Domino-like propagation of collective u-turns in fish schools. submitted to bioRxiv.

  53. Lissaman, P. B. S., & Shollenberger, C. A. (1970). Formation flight of birds. Science, 168(3934), 1003–1005.

    Google Scholar 

  54. Lizier, J. T. (2013). The local information dynamics of distributed computation in complex systems, Springer Theses. Berlin: Springer.

    Google Scholar 

  55. Lizier, J. T. (2014a). JIDT: An information-theoretic toolkit for studying the dynamics of complex systems. Frontiers in Robotics and AI, 1, 11.

    Google Scholar 

  56. Lizier, J. T. (2014b). Measuring the dynamics of information processing on a local scale in time and space. In M. Wibral, R. Vicente, & J. T. Lizier (Eds.), Directed information measures in neuroscience, understanding complex systems (pp. 161–193). Berlin: Springer.

    Google Scholar 

  57. Lizier, J. T., Heinzle, J., Horstmann, A., Haynes, J. D., & Prokopenko, M. (2011a). Multivariate information-theoretic measures reveal directed information structure and task relevant changes in fMRI connectivity. Journal of Computational Neuroscience, 30(1), 85–107.

    MathSciNet  Google Scholar 

  58. Lizier, J. T., Pritam, S., & Prokopenko, M. (2011b). Information dynamics in small-world boolean networks. Artificial Life, 17(4), 293–314.

    Google Scholar 

  59. Lizier, J. T., & Prokopenko, M. (2010). Differentiating information transfer and causal effect. The European Physical Journal B, 73(4), 605–615.

    Google Scholar 

  60. Lizier, J. T., Prokopenko, M., & Zomaya, A. Y. (2008). Local information transfer as a spatiotemporal filter for complex systems. Physical Review E, 77(2), 026110.

    MathSciNet  Google Scholar 

  61. Lizier, J. T., Prokopenko, M., & Zomaya, A. Y. (2010). Information modification and particle collisions in distributed computation. Chaos, 20(3), 037109.

    MathSciNet  MATH  Google Scholar 

  62. Lizier, J. T., Prokopenko, M., & Zomaya, A. Y. (2012). Local measures of information storage in complex distributed computation. Information Sciences, 208, 39–54.

    Google Scholar 

  63. Lizier, J. T., Prokopenko, M., & Zomaya, A. Y. (2014). A framework for the local information dynamics of distributed computation in complex systems. In M. Prokopenko (Ed.), Guided self-organization: Inception, emergence, complexity and computation (Vol. 9, pp. 115–158). Berlin: Springer.

    Google Scholar 

  64. Lizier, J. T., & Rubinov, M. (2012). Multivariate construction of effective computational networks from observational data. Technical Report Preprint 25/2012, Max Planck Institute for Mathematics in the Sciences.

  65. Lord, W. M., Sun, J., Ouellette, N. T., & Bollt, E. M. (2016). Inference of causal information flow in collective animal behavior. IEEE Transactions on Molecular, Biological and Multi-Scale Communications, 2(1), 107–116.

    Google Scholar 

  66. Mann, R. P., Perna, A., Strömbom, D., Garnett, R., Herbert-Read, J. E., Sumpter, D. J. T., et al. (2012). Multi-scale inference of interaction rules in animal groups using bayesian model selection. PLOS Computational Biology, 8(1), 1–12.

    Google Scholar 

  67. Marinazzo, D., Pellicoro, M., & Stramaglia, S. (2012). Causal information approach to partial conditioning in multivariate data sets. Computational and Mathematical Methods in Medicine, 2012, 303601. https://doi.org:1155/2012/303601.

  68. Materassi, M., Consolini, G., Smith, N., & De Marco, R. (2014). Information theory analysis of cascading process in a synthetic model of fluid turbulence. Entropy, 16(3), 1272–1286.

    Google Scholar 

  69. May, R. M. (1979). Flight formations in geese and other birds. Nature, 282, 778–780.

    Google Scholar 

  70. Miller, J. M., Wang, X. R., Lizier, J. T., Prokopenko, M., & Rossi, L. F. (2014). Measuring information dynamics in swarms. In M. Prokopenko (Ed.), Guided self-organization: Inception, emergence, complexity and computation (Vol. 9, pp. 343–364). Berlin: Springer.

    Google Scholar 

  71. Moussaïd, M., Helbing, D., Garnier, S., Johansson, A., Combe, M., & Theraulaz, G. (2009). Experimental study of the behavioural mechanisms underlying self-organization in human crowds. Proceedings of the Royal Society of London B: Biological Sciences, 276(1668), 2755–2762.

    Google Scholar 

  72. Moussaïd, M., Helbing, D., & Theraulaz, G. (2011). How simple rules determine pedestrian behavior and crowd disasters. Proceedings of the National Academy of Sciences, 108(17), 6884–6888.

    Google Scholar 

  73. Nagy, M., Ákos, Z., Biro, D., & Vicsek, T. (2010). Hierarchical group dynamics in pigeon flocks. Nature, 464(7290), 890–893.

    Google Scholar 

  74. Nagy, M., Vásárhelyi, G., Pettit, B., Roberts-Mariani, I., Vicsek, T., & Biro, D. (2013). Context-dependent hierarchies in pigeons. Proceedings of the National Academy of Sciences, 110(32), 13049–13054.

    Google Scholar 

  75. Orange, N., & Abaid, N. (2015). A transfer entropy analysis of leader-follower interactions in flying bats. The European Physical Journal Special Topics, 224(17), 3279–3293.

    Google Scholar 

  76. Parrish, J. K., Viscido, S. V., & Grünbaum, D. (2002). Self-organized fish schools: an examination of emergent properties. Biological Bulletin, 202(3), 296–305.

    Google Scholar 

  77. Partridge, B. (1980). The effect of school size on the structure and dynamics of minnow schools. Animal Behaviour, 28(1), 68-IN3.

    MathSciNet  Google Scholar 

  78. Pérez-Escudero, A., Vicente-Page, J., Hinz, R. C., Arganda, S., & de Polavieja, G. G. (2014). idTracker: Tracking individuals in a group by automatic identification of unmarked animals. Nature Methods, 11(7), 743–748.

    Google Scholar 

  79. Potts, W. K. (1984). The chorus-line hypothesis of manoeuvre coordination in avian flocks. Nature, 309(5966), 344–345.

    Google Scholar 

  80. Procaccini, A., Orlandi, A., Cavagna, A., Giardina, I., Zoratto, F., Santucci, D., et al. (2011). Propagating waves in starling, sturnus vulgaris, flocks under predation. Animal Behaviour, 82(4), 759–765.

    Google Scholar 

  81. Prokopenko, M., Lizier, J. T., Obst, O., & Wang, X. R. (2011). Relating Fisher information to order parameters. Physical Review E, 84(4), 041116.

    Google Scholar 

  82. Ragwitz, M., & Kantz, H. (2002). Markov models from data by simple nonlinear time series predictors in delay embedding spaces. Physical Review E, 65, 056201.

    Google Scholar 

  83. Razak, F. A., & Jensen, H. J. (2014). Quantifying ‘causality’ in complex systems: Understanding transfer entropy. PLOS ONE, 9(6), e99462.

    Google Scholar 

  84. Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. In SIGGRAPH ’87 Proceedings of the 14th annual conference on computer graphics and interactive techniques. ACM, New York, NY, USA (Vol. 21, pp. 25–34).

  85. Richardson, T. O., Perony, N., Tessone, C. J., Bousquet, C. A., Manser, M. B., & Schweitzer, F. (2013). Dynamical coupling during collective animal motion. arXiv:1311.1417.

  86. Riley, D. A., & Leith, C. R. (1976). Multidimensional psychophysics and selective attention in animals. Psychological Bulletin, 83(1), 138.

    Google Scholar 

  87. Rosenthal, S. B., Twomey, C. R., Hartnett, A. T., Wu, H. S., & Couzin, I. D. (2015). Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion. Proceedings of the National Academy of Sciences, 112(15), 4690–4695.

    Google Scholar 

  88. Schreiber, T. (2000). Measuring information transfer. Physical Review Letters, 85(2), 461–464.

    MathSciNet  Google Scholar 

  89. Smirnov, D. A. (2013). Spurious causalities with transfer entropy. Physical Review E, 87, 042917.

    Google Scholar 

  90. Stramaglia, S., Wu, G. R., Pellicoro, M., & Marinazzo, D. (2012). Expanding the transfer entropy to identify information circuits in complex systems. Physical Review E, 86, 066211.

    Google Scholar 

  91. Sumpter, D., Buhl, J., Biro, D., & Couzin, I. (2008). Information transfer in moving animal groups. Theory in Biosciences, 127(2), 177–186.

    Google Scholar 

  92. Sun, Y., Rossi, L. F., Shen, C. C., Miller, J., Wang, X. R., Lizier, J. T., et al. (2014). Information transfer in swarms with leaders. arXiv:1407.0007.

  93. Theraulaz, G., Bonabeau, E., Nicolis, S. C., Solé, R. V., Fourcassié, V., Blanco, S., et al. (2002a). Spatial patterns in ant colonies. Proceedings of the National Academy of Sciences, 99(15), 9645–9649.

    MATH  Google Scholar 

  94. Theraulaz, G., Bonabeau, E., Sole, R. V., Schatz, B., & Deneubourg, J. L. (2002b). Task partitioning in a ponerine ant. Journal of Theoretical Biology, 215(4), 481–489.

    Google Scholar 

  95. Tomaru, T., Murakami, H., Niizato, T., Nishiyama, Y., Sonoda, K., Moriyama, T., et al. (2016). Information transfer in a swarm of soldier crabs. Artificial Life and Robotics, 21 (2), 177–180.

    Google Scholar 

  96. Tunstrøm, K., Katz, Y., Ioannou, C. C., Huepe, C., Lutz, M. J., & Couzin, I. D. (2013). Collective states, multistability and transitional behavior in schooling fish. PLOS Computational Biology, 9(2), 1–11.

    MathSciNet  Google Scholar 

  97. Vakorin, V. A., Krakovska, O. A., & McIntosh, A. R. (2009). Confounding effects of indirect connections on causality estimation. Journal of Neuroscience Methods, 184(1), 152–160.

    Google Scholar 

  98. Vicente, R., Wibral, M., Lindner, M., & Pipa, G. (2011). Transfer entropy—A model-free measure of effective connectivity for the neurosciences. Journal of Computational Neuroscience, 30(1), 45–67.

    MathSciNet  Google Scholar 

  99. Wang, X. R., Miller, J. M., Lizier, J. T., Prokopenko, M., & Rossi, L. F. (2012). Quantifying and tracing information cascades in swarms. PLOS ONE, 7(7), 1–7.

    Google Scholar 

  100. Weitz, S., Blanco, S., Fournier, R., Gautrais, J., Jost, C., & Theraulaz, G. (2012). Modeling collective animal behavior with a cognitive perspective: A methodological framework. PLOS ONE, 7(6), 1–16.

    Google Scholar 

  101. Wibral, M., Lizier, J. T., & Priesemann, V. (2015). Bits from brains for biologically-inspired computing. Frontiers in Robotics and AI, 2, 5.

    Google Scholar 

  102. Wibral, M., Pampu, N., Priesemann, V., Siebenhühner, F., Seiwert, H., Lindner, M., et al. (2013). Measuring information-transfer delays. PLOS ONE, 8(2), 1–19.

    Google Scholar 

  103. Wibral, M., Vicente, R., & Lindner, M. (2014). Transfer entropy in neuroscience. In M. Wibral, R. Vicente, & J. T. Lizier (Eds.), Directed information measures in neuroscience, understanding complex systems (pp. 3–36). Berlin: Springer.

    Google Scholar 

  104. Williams, P. L., & Beer, R. D. (2011). Generalized measures of information transfer. arXiv:1102.1507.

Download references

Acknowledgements

GT designed research; VL, PT and GT performed research; VL, LJ, PT, RW and GT analysed data. EC, JL, RW and MP developed information dynamics methods, performed information-theoretic analysis, and identified information flows and motifs. EC designed, developed and run software for the information-theoretic analysis. GT, JL, EC and MP conceived and analysed information cascade. EC, JL and MP wrote the paper. GT and VL edited the manuscript and contributed to the writing.

Funding E.C. was supported by the University of Sydney’s “Postgraduate Scholarship in the field of Complex Systems” from Faculty of Engineering & IT and by a CSIRO top-up scholarship. L.J. was supported by a grant from the China Scholarship Council (CSC NO.201506040167). V.L. was supported by a doctoral fellowship from the scientific council of the University Paul Sabatier. This study was supported by grants from the Centre National de la Recherche Scientifique and University Paul Sabatier (project Dynabanc). J.L. was supported through the Australian Research Council DECRA grant DE160100630. M.P. was supported by The University of Sydney’s DVC Research Strategic Research Excellence Initiative (SREI-2020) project, “CRISIS: Crisis Response in Interdependent Social-Infrastructure Systems” (IRMA 194163). Sydney Informatics Hub at the University of Sydney provided access to HPC computational resources that have contributed to the research results reported within the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Emanuele Crosato.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical standard

All experiments have been approved by the Ethics Committee for Animal Experimentation of the Toulouse Research Federation in Biology N1 and comply with the European legislation for animal welfare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 1522 KB)

Supplementary material 2 (avi 573 KB)

Supplementary material 3 (pdf 2047 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Crosato, E., Jiang, L., Lecheval, V. et al. Informative and misinformative interactions in a school of fish. Swarm Intell 12, 283–305 (2018). https://doi.org/10.1007/s11721-018-0157-x

Download citation

Keywords

  • Collective animal behaviour
  • Collective motion
  • Fish interactions
  • Information dynamics