Skip to main content
Log in

Reinforcement learning in a continuum of agents

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

A Publisher Correction to this article was published on 07 April 2018

This article has been updated

Abstract

We present a decision-making framework for modeling the collective behavior of large groups of cooperatively interacting agents based on a continuum description of the agents’ joint state. The continuum model is derived from an agent-based system of locally coupled stochastic differential equations, taking into account that each agent in the group is only partially informed about the global system state. The usefulness of the proposed framework is twofold: (i) for multi-agent scenarios, it provides a computational approach to handling large-scale distributed decision-making problems and learning decentralized control policies. (ii) For single-agent systems, it offers an alternative approximation scheme for evaluating expectations of state distributions. We demonstrate our framework on a variant of the Kuramoto model using a variety of distributed control tasks, such as positioning and aggregation. As part of our experiments, we compare the effectiveness of the controllers learned by the continuum model and agent-based systems of different sizes, and we analyze how the degree of observability in the system affects the learning process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 07 April 2018

    The original version of this article unfortunately contained a mistake. The presentation of Equation (21) was incorrect. The corrected equation is given below.

Notes

  1. Footnote 2

  2. Note that we use the terms decision-making and control interchangeably in this work.

  3. Note that both these exploration types are different from the exploration in policy space, which we discuss in detail in Sect. 4.

  4. Note that the value in Eq. (11) is based on a global definition of reward. We can easily switch to a “local” (i.e., agent-based) value computation by choosing \(R^G\) as in Eq. (10), which is in accordance with the definition of private value in Šošić et al. (2017).

  5. This function is not to be confused with the probability density function of a single agent’s state (see Sect. 3.4) which, in contrast to the object defined here, is a deterministic quantity.

  6. Recall that the continuum model requires only one system roll-out (see Sect. 3.3).

References

  • Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight, T. F., et al. (2000). Amorphous computing. Communications of the ACM, 43(5), 74–82.

    Article  Google Scholar 

  • Aumann, R. J. (1964). Markets with a continuum of traders. Econometrica, 32(1), 39–50.

    Article  MathSciNet  MATH  Google Scholar 

  • Beal, J. (2005). Programming an amorphous computational medium. In J. P Banâtre, P. Fradet, J. L. Giavitto, & O. Michel (Eds.), Unconventional programming paradigms (pp. 121–136). Berlin: Springer.

  • Bernstein, D. S., Givan, R., Immerman, N., & Zilberstein, S. (2002). The complexity of decentralized control of Markov decision processes. Mathematics of Operations Research, 27(4), 819–840.

    Article  MathSciNet  MATH  Google Scholar 

  • Billingsley, P. (1999). Convergence of probability measures. New York: Wiley.

    Book  MATH  Google Scholar 

  • Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1–41.

    Article  Google Scholar 

  • Correll, N., & Martinoli, A. (2006). System identification of self-organizing robotic swarms. In M. Gini & R. Voyles (Eds.) Distributed autonomous robotic systems 7 (pp. 31–40). Tokyo: Springer Japan.

  • Couzin, I. D., Krause, J., James, R., Ruxton, G. D., & Franks, N. R. (2002). Collective memory and spatial sorting in animal groups. Journal of Theoretical Biology, 218(1), 1–11.

    Article  MathSciNet  Google Scholar 

  • Crutchfield, J. P., & Mitchell, M. (1995). The evolution of emergent computation. Proceedings of the National Academy of Sciences, 92(23), 10742–10746.

    Article  MATH  Google Scholar 

  • Dean, D. S. (1996). Langevin equation for the density of a system of interacting Langevin processes. Journal of Physics A: Mathematical and General, 29(24), L613.

    Article  MathSciNet  Google Scholar 

  • Deisenroth, M. P., Neumann, G., & Peters, J. (2013). A survey on policy search for robotics. Foundations and Trends in Robotics, 2(1–2), 1–142.

    Google Scholar 

  • Doucet, A., Godsill, S., & Andrieu, C. (2000). On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 10(3), 197–208.

    Article  Google Scholar 

  • Dubkov, A., & Spagnolo, B. (2005). Generalized Wiener process and Kolmogorov’s equation for diffusion induced by non-Gaussian noise source. Fluctuation and Noise Letters, 5(02), L267–L274.

    Article  MathSciNet  Google Scholar 

  • Ermentrout, G. B., & Edelstein-Keshet, L. (1993). Cellular automata approaches to biological modeling. Journal of Theoretical Biology, 160(1), 97–133.

    Article  Google Scholar 

  • Fornberg, B., & Flyer, N. (2015). Solving PDEs with radial basis functions. Acta Numerica, 24, 215–258.

    Article  MathSciNet  MATH  Google Scholar 

  • Freitas, R. A. (2005). Current status of nanomedicine and medical nanorobotics. Journal of Computational and Theoretical Nanoscience, 2(1), 1–25.

    Google Scholar 

  • Grondman, I., Busoniu, L., Lopes, G. A. D., & Babuska, R. (2012). A survey of actor-critic reinforcement learning: Standard and natural policy gradients. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(6), 1291–1307.

    Article  Google Scholar 

  • Hamann, H. (2014). Evolution of collective behaviors by minimizing surprise. In Proceedings of the 14th international conference on the synthesis and simulation of living systems (pp. 344–351). MIT Press.

  • Hamann, H., & Wörn, H. (2008). A framework of space–time continuous models for algorithm design in swarm robotics. Swarm Intelligence, 2(2), 209–239.

    Article  Google Scholar 

  • Hayes, A. T. (2002). How many robots? Group size and efficiency in collective search tasks. In H. Asama, T. Arai, T. Fukuda, & T. Hasegawa (Eds.), Distributed autonomous robotic systems 5 (pp. 289–298). Tokyo: Springer Japan.

  • Houchmandzadeh, B., & Vallade, M. (2015). Exact results for a noise-induced bistable system. Physical Review E, 91(2), 022115.

    Article  MathSciNet  Google Scholar 

  • Hüttenrauch, M., Šošić, A., & Neumann, G. (2017). Guided deep reinforcement learning for swarm systems. In AAMAS workshop on autonomous robots and multirobot systems. arXiv:1709.06011.

  • Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and acting in partially observable stochastic domains. Artificial Intelligence, 101(1), 99–134.

    Article  MathSciNet  MATH  Google Scholar 

  • Karatzas, I., & Shreve, S. (1998). Brownian motion and stochastic calculus. Berlin: Springer Science & Business Media.

    Book  MATH  Google Scholar 

  • Krylov, N. V. (2008). Controlled diffusion processes. Berlin: Springer Science & Business Media.

    Google Scholar 

  • Kuramoto, Y. (1975). Self-entrainment of a population of coupled non-linear oscillators. In International symposium on mathematical problems in theoretical physics (pp. 420–422). Springer.

  • Land, M., & Belew, R. K. (1995). No perfect two-state cellular automata for density classification exists. Physical Review Letters, 74(25), 5148.

    Article  Google Scholar 

  • Lasry, J.-M., & Lions, P.-L. (2007). Mean field games. Japanese Journal of Mathematics, 2(1), 229–260.

    Article  MathSciNet  MATH  Google Scholar 

  • Lerman, K., Martinoli, A., & Galstyan, A. (2005). A review of probabilistic macroscopic models for swarm robotic systems. In Swarm robotics: SAB 2004 international workshop (pp. 143–152). Berlin: Springer.

  • Lesser, V., Ortiz, C. L., & Tambe, M. (2003). Distributed sensor networks: A multiagent perspective. Berlin: Springer Science & Business Media.

    Book  MATH  Google Scholar 

  • MacLennan, B. J. (1990). Continuous spatial automata. Technical report, University of Tennessee, Computer Science Department.

  • Macua, S. V., Chen, J., Zazo, S., & Sayed, A. H. (2015). Distributed policy evaluation under multiple behavior strategies. IEEE Transactions on Automatic Control, 60(5), 1260–1274.

    Article  MathSciNet  MATH  Google Scholar 

  • Martinoli, A., Ijspeert, A. J., & Mondada, F. (1999). Understanding collective aggregation mechanisms: From probabilistic modelling to experiments with real robots. Robotics and Autonomous Systems, 29(1), 51–63.

    Article  Google Scholar 

  • Michini, B., & How, J. P. (2012). Bayesian nonparametric inverse reinforcement learning. In P. A. Flach, T. De Bie, & N. Cristianini (Eds.), Machine learning and knowledge discovery in databases (pp. 148–163). Berlin: Springer.

  • Munos, R. (2006). Policy gradient in continuous time. Journal of Machine Learning Research, 7, 771–791.

    MathSciNet  MATH  Google Scholar 

  • Ohkubo, J., Shnerb, N., & Kessler, D. A. (2008). Transition phenomena induced by internal noise and quasi-absorbing state. Journal of the Physical Society of Japan, 77(4), 044002.

    Article  Google Scholar 

  • Ramaswamy, S. (2010). The mechanics and statistics of active matter. Annual Review of Condensed Matter Physics, 1(1), 323–345.

    Article  MathSciNet  Google Scholar 

  • Risken, H. (1996). Fokker–Planck equation. In H. Haken (Ed.) The Fokker–Planck equation (pp. 63–95). Berlin, Heidelberg: Springer.

  • Schweitzer, F. (2003). Brownian agents and active particles: Collective dynamics in the natural and social sciences. Berlin, Heidelberg: Springer.

    MATH  Google Scholar 

  • Sehnke, F., Osendorfer, C., Rückstieß, T., Graves, A., Peters, J., & Schmidhuber, J. (2010). Parameter-exploring policy gradients. Neural Networks, 23(4), 551–559.

    Article  Google Scholar 

  • Sipper, M. (1999). The emergence of cellular computing. Computer, 32(7), 18–26.

    Article  Google Scholar 

  • Šošić, A., KhudaBukhsh, W. R., Zoubir, A. M., Koeppl, H. (2017). Inverse reinforcement learning in swarm systems. In Proceedings of the 16th international conference on autonomous agents and multiagent systems (pp. 1413–1421). International Foundation for Autonomous Agents and Multiagent Systems.

  • Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge: MIT Press.

    Google Scholar 

  • Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., & Shochet, O. (1995). Novel type of phase transition in a system of self-driven particles. Physical Review Letters, 75(6), 1226–1229.

    Article  MathSciNet  Google Scholar 

  • Whitesides, G. M., & Grzybowski, B. (2002). Self-assembly at all scales. Science, 295(5564), 2418–2421.

    Article  Google Scholar 

Download references

Acknowledgements

H. Koeppl gratefully acknowledges support from the German Research Foundation (DFG) within the Collaborative Research Center (CRC) 1053 - MAKI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Šošić.

Appendix: Derivation of the continuum equation

Appendix: Derivation of the continuum equation

In the following, we show how the continuum equation (15) can be derived from the agent-based system of stochastic differential equations (1) as the number of agents in the system approaches infinity. Herein, we follow the derivation in Dean (1996), which we extend with the necessary control-related objects.

Our goal is to find an expression for the temporal evolution of the global agent density \(\rho ^{(N)}(x,t)\) as \(N\rightarrow \infty \). We start with an Itô expansion of the stochastic differential equation (5),

$$\begin{aligned} \begin{aligned} {\mathrm {d}}f\big (X_i(t)\big )&= \nabla f\big (X_i(t)\big ) \cdot h\Big (X_i(t), \pi _\theta \big (\xi (X_i(t),X(t))\big )\Big ){\mathrm {d}}t \\&\phantom {=}\ + \ D\nabla ^2f\big (X_i(t)\big )\,{\mathrm {d}}t + \nabla f\big (X_i(t)\big ) \cdot {\mathrm {d}}W_i(t) ,\end{aligned} \end{aligned}$$
(24)

where \(f:\mathcal {X}\rightarrow \mathbb {R}\) is a twice-differentiable test function. Using the identity

$$\begin{aligned} f\big (X_i(t)\big ) = \int _{x\in \mathcal {X}} \rho _i(x,t)f(x) \, \mathrm {d}x ,\end{aligned}$$
(25)

which follows from the definition of the single-agent density in Eq. (14), we rewrite Eq. (24) as

$$\begin{aligned} {\mathrm {d}}f\big (X_i(t)\big )&= \int _{x\in \mathcal {X}} \bigg [ \nabla f(x) \cdot h\Big (x, \pi _\theta \big (\xi (x,X(t))\big )\Big ){\mathrm {d}}t \\&\phantom {=}\ + \ D\nabla ^2f(x)\,{\mathrm {d}}t + \nabla f(x) \cdot {\mathrm {d}}W_i(t)\bigg ] \rho _i(x,t) \, \mathrm {d}x .\end{aligned}$$

Next, we integrate this equation by parts, which yields

$$\begin{aligned} {\mathrm {d}}f\big (X_i(t)\big )&= \int _{x\in \mathcal {X}} \bigg \{-\nabla \cdot \bigg [\rho _i(x,t) h\Big (x, \pi _\theta \big (\xi (x,X(t))\big )\Big )\bigg ]{\mathrm {d}}t \\&\phantom {=}\ + D\nabla ^2\rho _i(x,t)\,{\mathrm {d}}t - \nabla \cdot \rho _i(x,t)\,{\mathrm {d}}W_i(t) \bigg \} f(x) \, \mathrm {d}x .\end{aligned}$$

On the other hand, identity (25) also implies that

$$\begin{aligned} {\mathrm {d}}f\big (X_i(t)\big ) = \int _{x\in \mathcal {X}} {\mathrm {d}}\rho _i(x,t)\,f(x) \, \mathrm {d}x .\end{aligned}$$

Comparing both equations, we conclude that

$$\begin{aligned} {\mathrm {d}}\rho _i(x,t)&= -\nabla \cdot \bigg [\rho _i(x,t) h\Big (x, \pi _\theta \big (\xi (x,X(t))\big )\Big )\bigg ]{\mathrm {d}}t \nonumber \\&\phantom {=}\ + D\nabla ^2\rho _i(x,t)\,{\mathrm {d}}t - \nabla \cdot \rho _i(x,t)\,{\mathrm {d}}W_i(t) .\end{aligned}$$

In order to obtain an expression for the global density, we sum up all agent-based increments, which gives

$$\begin{aligned} {\mathrm {d}}\rho ^{(N)}(x,t)&= \frac{1}{N} \sum _{i=1}^N {\mathrm {d}}\rho _i(x,t) \nonumber \\&= -\nabla \cdot \Big [\rho ^{(N)}(x,t) h\big (x, \bar{u}^{(N)}(x,t)\big )\Big ]{\mathrm {d}}t \nonumber \\&\phantom {=}\ + D\nabla ^2\rho ^{(N)}(x,t)\,{\mathrm {d}}t - \nabla \cdot \frac{1}{N} \sum _{i=1}^N \rho _i(x,t)\,{\mathrm {d}}W_i(t) , \end{aligned}$$
(26)

where we introduced the finite-size control field \(\bar{u}^{(N)}(x,t)\),

$$\begin{aligned} \bar{u}^{(N)}(x,t) :=\pi _\theta \big (\overline{y}^{(N)}(x,t)\big ) , \end{aligned}$$
(27)

and the underlying observation field \(\overline{y}^{(N)}(x,t)\),

$$\begin{aligned} \overline{y}^{(N)}(x,t)&:=\xi \big (x,X(t)\big ) = \frac{\int _\mathcal {X} \rho ^{(N)}(y,t)g(x,y)k(x,y) \, \mathrm {d}y}{\int _\mathcal {X} \rho ^{(N)}(y',t)k(x,y') \, \mathrm {d}y'} , \end{aligned}$$
(28)

as replacements for the agent-based control and observation signals, \(\{u_i(t)\}\) and \(\{Y_i(t)\}\), respectively. Note that the latter equation follows directly from Eq. (3) using the definition of the N-agent density in Eq. (13).

As shown by Dean (1996), the cumulative influence of the agent-dependent noise terms in Eq. (26) can be described by a statistically equivalent, agent-independent field of noise processes \(\overline{W}(x,t)\) with correlation function

$$\begin{aligned} {\mathbb {E}}\left[ \overline{W}_m(x,t)\overline{W}_n\left( y,t'\right) \right] = 2D\delta _{m,n}\delta _{x,y}\min \left( t,t'\right) ,\end{aligned}$$

where \(\overline{W}_m(x,t)\) denotes the \(m\text {th}\) component of the field at position x and time t. Equation (26) then simplifies to

$$\begin{aligned} {\mathrm {d}}\rho ^{(N)}(x,t)&= -\nabla \cdot \Big [\rho ^{(N)}(x,t) h\big (x, \bar{u}^{(N)}(x,t)\big )\Big ]{\mathrm {d}}t\\&\phantom {=}\ + D\nabla ^2\rho ^{(N)}(x,t)\,{\mathrm {d}}t + \nabla \cdot \left[ \frac{1}{N}\sqrt{\rho ^{(N)}(x,t)}\,{\mathrm {d}}\overline{W}(x,t) \right] .\end{aligned}$$

In the limit \(N\rightarrow \infty \), the stochastic component of this differential equation vanishes and we obtain our final convection–diffusion dynamics for the continuum density \(\rho (x,t)\),

$$\begin{aligned} \frac{\partial \rho (x,t)}{\partial t} = -\nabla \cdot \Big [\rho (x,t) h\big (x, \bar{u}(x,t)\big )\Big ] + D\nabla ^2\rho (x,t) ,\end{aligned}$$

where the continuum control field \(\bar{u}(x,t)\) and the underlying continuum observation field \(\overline{y}(x,t)\) are defined as in Eqs. (27) and (28), respectively, but \(\rho ^{(N)}(x,t)\) is replaced by \(\rho (x,t)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šošić, A., Zoubir, A.M. & Koeppl, H. Reinforcement learning in a continuum of agents. Swarm Intell 12, 23–51 (2018). https://doi.org/10.1007/s11721-017-0142-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-017-0142-9

Keywords

Navigation