Advertisement

Swarm Intelligence

, Volume 11, Issue 2, pp 101–130 | Cite as

An investigation of clustering strategies in many-objective optimization: the I-Multi algorithm as a case study

  • Olacir R. CastroJr
  • Aurora Pozo
  • Jose A. Lozano
  • Roberto Santana
Article

Abstract

A variety of general strategies have been applied to enhance the performance of multi-objective optimization algorithms for many-objective optimization problems (those with more than three objectives). One of these strategies is to split the solutions to cover different regions of the search space (clusters) and apply an optimizer to each region with the aim of producing more diverse solutions and achieving a better distributed approximation of the Pareto front. However, the effectiveness of clustering in this context depends on a number of issues, including the characteristics of the objective functions. In this paper we show how the choice of the clustering strategy can greatly influence the behavior of an optimizer. We investigate the relation between the characteristics of a multi-objective optimization problem and the efficiency of the use of a clustering combination (clustering space, metric) in the resolution of this problem. Using as a case study the Iterated Multi-swarm (I-Multi) algorithm, a recently introduced multi-objective particle swarm optimization algorithm, we scrutinize the impact that clustering in different spaces (of variables, objectives and a combination of both) can have on the approximations of the Pareto front. Furthermore, employing two difficult multi-objective benchmarks of problems with up to 20 objectives, we evaluate the effect of using different metrics for determining the similarity between the solutions during the clustering process. Our results confirm the important effect of the clustering strategy on the behavior of multi-objective optimizers. Moreover, we present evidence that some problem characteristics can be used to select the most effective clustering strategy, significantly improving the quality of the Pareto front approximations produced by I-Multi.

Keywords

Many-objective Clustering MOPSO I-Multi Distance metrics PSO 

References

  1. Adra, S. F. (2007). Improving convergence, diversity and pertinency in multiobjective optimisation. Ph.D. Thesis, Department of Automatic Control and Systems Engineering, The University of Sheffield, UK.Google Scholar
  2. Aggarwal, C. C., Hinneburg, A., & Keim, D. A. (2001). On the surprising behavior of distance metrics in high dimensional space. In International Conference on Database Theory (pp. 420–434). Springer.Google Scholar
  3. Bader, J., Deb, K., & Zitzler, E. (2010). Faster hypervolume-based search using Monte Carlo sampling. In Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems. Lecture Notes in Economics and Mathematical Systems (Vol. 634, pp. 313–326). Berlin: Springer.Google Scholar
  4. Benameur, L., Alami, J., & Imrani, A. E. (2009). A new hybrid particle swarm optimization algorithm for handling multiobjective problem using fuzzy clustering technique. In Proceedings of the 2009 International Conference on Computational Intelligence, Modelling and Simulation, CSSIM ’09 (pp. 48–53). Washington, DC: IEEE Computer Society.Google Scholar
  5. Berkhin, P. (2006). A survey of clustering data mining techniques. In J. Kogan, C. Nicholas, & M. Teboulle (Eds.), Grouping multidimensional data: Recent advances in clustering (pp. 25–71). Berlin: Springer.CrossRefGoogle Scholar
  6. Bosman, P. A., & Thierens, D. (2002). Multi-objective optimization with diversity preserving mixture-based iterated density estimation evolutionary algorithms. International Journal of Approximate Reasoning, 31(3), 259–289.MathSciNetCrossRefzbMATHGoogle Scholar
  7. Bringmann, K., Friedrich, T., Igel, C., & Voß, T. (2013). Speeding up many-objective optimization by Monte Carlo approximations. Artificial Intelligence, 204, 22–29.MathSciNetCrossRefzbMATHGoogle Scholar
  8. Britto, A., Mostaghim, S., & Pozo, A. (2013). Iterated multi-swarm: A multi-swarm algorithm based on archiving methods. In Genetic and Evolutionary Computation-GECCO (pp. 583–590). ACM.Google Scholar
  9. Britto, A., & Pozo, A. (2012). Using archiving methods to control convergence and diversity for many-objective problems in particle swarm optimization. In IEEE Congress on Evolutionary Computation (pp. 1–8). IEEE Computer Society.Google Scholar
  10. Brownlee, A. E. I., & Wright, J. A. (2012). Solution analysis in multi-objective optimization (pp. 317–324). Loughborough University, IBPSA-England.Google Scholar
  11. Castro, O. R, Jr., Santana, R., & Pozo, A. (2016). C-Multi: A competent multi-swarm approach for many-objective problems. Neurocomputing, 180, 68–78.CrossRefGoogle Scholar
  12. Clerc, M., & Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1), 58–73.CrossRefGoogle Scholar
  13. Coello, C. A. C., & Cortés, N. C. (2005). Solving multiobjective optimization problems using an artificial immune system. Genetic Programming and Evolvable Machines, 6(2), 163–190.CrossRefGoogle Scholar
  14. Coello, C. A. C., Lamont, G. B., & Veldhuizen, D. A. V. (2006). Evolutionary algorithms for solving multi-objective problems (genetic and evolutionary computation). Secaucus: Springer, New York Inc.zbMATHGoogle Scholar
  15. Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1(2), 224–227.CrossRefGoogle Scholar
  16. Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimisation: NSGA-II. In Proceedings of the 6th International Conference on Parallel Problem Solving from Nature, PPSN VI (pp. 849–858). London: Springer.Google Scholar
  17. Deb, K., Thiele, L., Laumanns, M., & Zitzler, E. (2002). Scalable multi-objective optimization test problems. In IEEE Congress on Evolutionary Computation (Vol. 1, pp. 825–830). IEEE Press.Google Scholar
  18. Deb, K., Thiele, L., Laumanns, M., & Zitzler, E. (2005). Scalable test problems for evolutionary multiobjective optimization. In A. Abraham, L. Jain, & R. Goldberg (Eds.), Evolutionary multiobjective optimization, advanced information and knowledge processing (pp. 105–145). London: Springer.Google Scholar
  19. Deborah, H., Richard, N., & Hardeberg, J. Y. (2015). A comprehensive evaluation of spectral distance functions and metrics for hyperspectral image processing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6), 3224–3234.CrossRefGoogle Scholar
  20. Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7, 1–30.MathSciNetzbMATHGoogle Scholar
  21. Deza, M. (2009). Encyclopedia of distances. Berlin: Springer.CrossRefzbMATHGoogle Scholar
  22. Emmendorfer, L. R., & Pozo, A. (2009). Effective linkage learning using low-order statistics and clustering. IEEE Transactions on Evolutionary Computation, 13(6), 1233–1246.CrossRefGoogle Scholar
  23. Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association, 32(200), 675–701.CrossRefzbMATHGoogle Scholar
  24. Fritsche, G., Strickler, A., Pozo, A., & Santana, R. (2015). Capturing relationships in multi-objective optimization. In Brazilian Conference on Intelligent Systems (BRACIS) (pp. 222–227).Google Scholar
  25. Hartigan, J., & Wong, M. (1979). Algorithm AS 136: A K-means clustering algorithm. Applied Statistics, 28(1), 100–108.CrossRefzbMATHGoogle Scholar
  26. Howarth, P., & Rüger, S. (2005). Fractional distance measures for content-based image retrieval. In European Conference on Information Retrieval (pp. 447–456). Springer.Google Scholar
  27. Huband, S., Hingston, P., Barone, L., & While, L. (2006). A review of multiobjective test problems and a scalable test problem toolkit. IEEE Transactions on Evolutionary Computation, 10(5), 477–506.CrossRefzbMATHGoogle Scholar
  28. Ikeda, K., Kita, H., & Kobayashi, S. (2001). Failure of Pareto-based MOEAs: does non-dominated really mean near to optimal? In IEEE Congress on Evolutionary Computation (Vol. 2, pp. 957–962. IEEE Press.Google Scholar
  29. Ishibuchi, H., Akedo, N., Ohyanagi, H., & Nojima, Y. (2011). Behavior of EMO algorithms on many-objective optimization problems with correlated objectives. In IEEE Congress on Evolutionary Computation (pp. 1465–1472).Google Scholar
  30. Ishibuchi, H., Tsukamoto, N., & Nojima, Y. (2008). Evolutionary many-objective optimization: A short review. In IEEE Congress on Evolutionary Computation (pp. 2419–2426). IEEE Press.Google Scholar
  31. Jin, Y. & Sendhoff, B. (2004). Reducing fitness evaluations using clustering techniques and neural network ensembles. In K. Deb (Ed.), Genetic and Evolutionary Computation-GECCO. Lecture Notes in Computer Science (Vol. 3102, pp. 688–699). Berlin: Springer.Google Scholar
  32. Karshenas, H., Santana, R., Bielza, C., & Larrañaga, P. (2014). Multi-objective optimization based on joint probabilistic modeling of objectives and variables. IEEE Transactions on Evolutionary Computation, 18(4), 519–542.CrossRefGoogle Scholar
  33. Kaufman, L., & Rousseeuw, P. (1987). Clustering by means of medoids. In Statistical data analysis based on the L1-Norm and related methods (pp. 405–416). Elsevier Science Ltd.Google Scholar
  34. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of IEEE International Conference on Neural Networks (pp. 1942–1948). IEEE Press.Google Scholar
  35. Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47(260), 583–621.CrossRefzbMATHGoogle Scholar
  36. Kukkonen, S., & Deb, K. (2006). Improved pruning of non-dominated solutions based on crowding distance for bi-objective optimization problems. In IEEE International Conference on Evolutionary Computation (pp. 1179–1186). IEEE Press.Google Scholar
  37. Larrañaga, P., & Lozano, J. A. (Eds.). (2002). Estimation of distribution algorithms: A new tool for evolutionary computation. Boston: Kluwer Academic Publishers.zbMATHGoogle Scholar
  38. Laumanns, M., & Zenklusen, R. (2011). Stochastic convergence of random search methods to fixed size Pareto front approximations. European Journal of Operational Research, 213(2), 414–421.MathSciNetCrossRefzbMATHGoogle Scholar
  39. Li, K., Deb, K., Zhang, Q., & Kwong, S. (2015). An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Transactions on Evolutionary Computation, 19(5), 694–716.CrossRefGoogle Scholar
  40. Liang, X., Li, W., Zhang, Y., & Zhou, M. (2015). An adaptive particle swarm optimization method based on clustering. Soft Computing, 19(2), 431–448.CrossRefGoogle Scholar
  41. Lozano, J., & Larrañaga, P. (1999). Applying genetic algorithms to search for the best hierarchical clustering of a dataset. Pattern Recognition Letters, 20(9), 911–918.CrossRefGoogle Scholar
  42. Ma, X., Liu, F., Qi, Y., Wang, X., Li, L., Jiao, L., et al. (2016). A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables. IEEE Transactions on Evolutionary Computation, 20(2), 275–298.CrossRefGoogle Scholar
  43. Mahfoud, S. W. (1995). Niching methods for genetic algorithms. Ph.D. Thesis, University of Illinois at Urbana–Champaign, Urbana, IL. Also IlliGAL Report No. 95001.Google Scholar
  44. Mostaghim, S., & Teich, J. (2004). Covering pareto-optimal fronts by subswarms in multi-objective particle swarm optimization. In IEEE Congress on Evolutionary Computation (Vol. 2, pp. 1404–1411). IEEE Press.Google Scholar
  45. Nebro, A. J., Durillo, J. J., Garcia-Nieto, J., Coello, C. A. C., Luna, F., & Alba, E. (2009). SMPSO: A new PSO-based metaheuristic for multi-objective optimization. In Computational Intelligence in Multi-criteria Decision-Making (pp. 66–73). IEEE Press.Google Scholar
  46. Nemenyi, P. (1963). Distribution-free multiple comparisons. Ph.D. Thesis, Princeton University.Google Scholar
  47. Okabe, T., Jin, Y., Sendhoff, B., & Olhofer, M. (2004). Voronoi-based estimation of distribution algorithm for multi-objective optimization. In IEEE Congress on Evolutionary Computation (pp. 1594–1601). Portland: IEEE Press.Google Scholar
  48. Pelikan, M. (2005). Hierarchical Bayesian optimization algorithm: Toward a new generation of evolutionary algorithms. In Studies in fuzziness and soft computing (Vol. 170). Springer.Google Scholar
  49. Pelikan, M., & Goldberg, D. E. (2000). Genetic algorithms, clustering, and the breaking of symmetry. In M. Schoenauer, K. Deb, G. Rudolph, X. Lutton, J. J. Merelo, et al. (Eds.), Parallel Problem Solving from Nature-PPSN VI 6th International Conference. Lecture Notes in Computer Science (pp. 385–394). Paris: Springer.Google Scholar
  50. Pelikan, M., Sastry, K., & Goldberg, D. E. (2005). Multiobjective hBOA, clustering and scalability. IlliGAL Report No. 2005005, University of Illinois at Urbana–Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL.Google Scholar
  51. Pulido, G. T., & Coello Coello, C. A. (2004). Using clustering techniques to improve the performance of a multi-objective particle swarm optimizer. In K. Deb (Ed.), Genetic and Evolutionary Computation-GECCO. Lecture Notes in Computer Science (Vol. 3102, pp. 225–237). Berlin: Springer.Google Scholar
  52. Santana, R., Larrañaga, P., & Lozano, J. A. (2010). Learning factorizations in estimation of distribution algorithms using affinity propagation. Evolutionary Computation, 18(4), 515–546.CrossRefGoogle Scholar
  53. Schutze, O., Esquivel, X., Lara, A., & Coello, C. A. C. (2012). Using the averaged Hausdorff distance as a performance measure in evolutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation, 16(4), 504–522.CrossRefGoogle Scholar
  54. Sindhya, K., Miettinen, K., & Deb, K. (2013). A hybrid framework for evolutionary multi-objective optimization. IEEE Transactions on Evolutionary Computation, 17(4), 495–511.CrossRefzbMATHGoogle Scholar
  55. Tsou, C. -S., Fang, H. -H., Chang, H. -H., & Kao, C. -H. (2006). An improved particle swarm Pareto optimizer with local search and clustering. In T. -D. Wang, X. Li, S. -H. Chen, X. Wang, H. Abbass, H. Iba, et al. (Eds.), Simulated Evolution and Learning. Lecture Notes in Computer Science (Vol. 4247, pp. 400–407). Berlin: Springer.Google Scholar
  56. Tsuji, M., Munetomo, M., & Akama, K. (2006). Linkage identification by fitness difference clustering. Evolutionary Computation, 14(4), 383–409.CrossRefGoogle Scholar
  57. While, L., Bradstreet, L., & Barone, L. (2012). A fast way of calculating exact hypervolumes. IEEE Transactions on Evolutionary Computation, 16(1), 86–95.CrossRefGoogle Scholar
  58. Yen, G., & Daneshyari, M. (2006). Diversity-based information exchange among multiple swarms in particle swarm optimization. In IEEE Congress on Evolutionary Computation (pp. 1686–1693).Google Scholar
  59. Zhang, Q., & Xue, S. (2007). An improved multi-objective particle swarm optimization algorithm. In L. Kang, Y. Liu, & S. Zeng (Eds.), Advances in Computation and Intelligence. Lecture Notes in Computer Science (Vol. 4683, pp. 372–381). Berlin: Springer.Google Scholar
  60. Zhang, Y., wei Gong, D., & hai Ding, Z. (2011). Handling multi-objective optimization problems with a multi-swarm cooperative particle swarm optimizer. Expert Systems with Applications, 38(11), 13933–13941.Google Scholar
  61. Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4), 257–271.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Computer Science DepartmentFederal University of ParanáCuritibaBrazil
  2. 2.Intelligent Systems Group, Department of Computer Science and Artificial IntelligenceUniversity of the Basque Country (UPV/EHU)San Sebastián-DonostiaSpain
  3. 3.Basque Center for Applied Mathematics (BCAM)BilbaoSpain

Personalised recommendations