Swarm Intelligence

, Volume 8, Issue 2, pp 113–138 | Cite as

Revisiting wavefront construction with collective agents: an approach to foraging

  • Olivier Simonin
  • François Charpillet
  • Eric Thierry
Article

Abstract

We consider the problem of coordinating a team of agents that have to collect disseminated resources in an unknown environment. We are interested in approaches in which agents collectively explore the environment and build paths between home and resources. The originality of our approach is to simultaneously build an artificial potential field (APF) around the agents’ home while foraging. We propose a multi-agent model defining a distributed and asynchronous version of Barraquand et al. Wavefront algorithm. Agents need only to mark and read integers locally on a grid, that is, their environment. We prove that the construction converges to the optimal APF. This allows the definition of a complete parameter-free foraging algorithm, called c-marking agents. The algorithm is evaluated by simulation, while varying the foraging settings. Then we compare our approach to a pheromone-based algorithm. Finally, we discuss requirements for implementation in robotics.

Keywords

Swarm algorithm Foraging task Artificial potential field Ant algorithms 

Supplementary material

Supplementary material 1 (mpg 3344 KB)

Supplementary material 2 (mpg 442 KB)

References

  1. Arkin, R. (1998). Behavior based robotics. Cambridge, MA: The MIT Press.Google Scholar
  2. Barraquand, J., Langlois, B., & Latombe, J. (1991). Numerical potential field techniques for robot path planning. In ’Robots in Unstructured Environments’, 91 ICAR., Fith International Conference on Advanced robotics (pp. 1012–1017). Picataway, NJ: IEEE Press.Google Scholar
  3. Barraquand, J., Langlois, B., & Latombe, J. (1992). Numerical potential field techniques for robot path planning. IEEE Transactions on Systems, Man and Cybernetics, 22(2), 224–241.CrossRefMathSciNetGoogle Scholar
  4. Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From natural to artificial systems. New York: Oxford University Press.MATHGoogle Scholar
  5. Deneubourg, J. L., Aron, S., Goss, S., Pasteels, J. M., & Duerinck, G. (1986). Random behaviour, amplification processes and number of participants : How they contribute to the foraging properties of ants. Physica D, 22(1–3), 176–186.CrossRefMathSciNetGoogle Scholar
  6. Drogoul, A., & Ferber, J. (1992). From Tom Thumb to the dockers: Some experiments with foraging robots. In 2nd Int. Conf. on simulation of adaptative behavior (pp. 451–459). Cambridge, MA: A Bradford Book / The MIT Press.Google Scholar
  7. Ferber, J. (1999). Multi-agent systems, an introduction to distributed artificial intelligence. London: Addison-Wesley.Google Scholar
  8. Garnier, S., Tache, F., Combe, M., Grimal, A., & Theraulaz, G. (2007). Alice in pheromone land: An experimental setup for the study of ant-like robots. In Swarm Intelligence Symposium, IEEE SIS 2007 (pp. 37–44). Piscataway, NJ: IEEE.Google Scholar
  9. Glad, A., Simonin, O., Buffet, O., & Charpillet, F. (2008). Theoretical study of ant-based algorithms for multi-agent patrolling. In Proceedings ECAI’08 18th European Conference on Artificial Intelligence (pp. 626–630). Amsterdam: IOS Press.Google Scholar
  10. Gutknecht, O., & Ferber, J. (2001). The MADKIT agent platform architecture. In Infrastructure for Agents, LNAI 1887 (pp. 48–55). Berlin: Springer.Google Scholar
  11. Herianto, A., & Kurabayashi, D. , (2009). Realization of an artificial pheromone system in random data carriers using RFID tags for autonomous navigation. Proceedings ICRA’09 International Conference on Robotics and Automation (pp. 2288–2293). Piscataway, NJ: IEEE Press.Google Scholar
  12. Hoff, N. R. I., Sagoff, A., Wood, R. J., & Nagpal., R., (2010). Two foraging algorithms for robot swarms using only local communication. In Proceedings of IEEE-ROBIO 2010: 2010 IEEE International Conference on Robotics and Biomimetics (pp. 123–130). Piscataway, NJ: IEEE Press.Google Scholar
  13. Holldobler, B., & Wilson, E. (1990). The ants. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
  14. Johansson, R., & Saffiotti, A. (2009). Navigating by stigmergy: A realization on an RFID floor for minimalistic robots. In Proc. of the IEEE Int. Conf. on Robotics and Automation (pp. 245–252). Picataway, NJ: IEEE Press.Google Scholar
  15. Khatib, O. (1985). Real-time obstacle avoidance for manipulators and mobile robots. In Proceedings of IEEE Intern. Conf. on Robotics and Automation ICRA (pp. 500–505). Los Alamitos, CA: The IEEE Computer Society Press.Google Scholar
  16. Koenig, S., & Likhachev, M. (2005). Fast replanning for navigation in unknown terrain. IEEE Transactions on Robotics, 21(3), 354–363.CrossRefGoogle Scholar
  17. Kowadlo, G., & Russell, R. A. (2008). Robot odor localization: A taxonomy and survey. The International Journal of Robotic Research, 27(8), 869–894.CrossRefGoogle Scholar
  18. López-Ibañez, M., Dubois-Lacoste, J., Stützle, T., & Birattari, M. (2011). The iRace Package: Iterated Racing for Automatic Algorithm Configuration. Technical report, IRIDIA Technical Report Series No. 2011–004, Université Libre de Bruxelles.Google Scholar
  19. Mamei, M., & Zambonelli, F. (2005). Spreading pheromones in everyday environments through RFID technology. In In Proc. of the 2d IEEE Symposium on Swarm Intelligence, pages 281–288. IEEE Computational Intelligence Society, New York.Google Scholar
  20. Michel, F., Beurier, G., & Ferber, J. (2005). The turtlekit simulation platform: application to complex systems. Workshops Sessions, First International Conference on Signal-Image Technology and Internet-based Systems (pp. 122–127). Los Alamitos, CA: IEEE.Google Scholar
  21. Monekosso, N., Remagnino, P., & Szarowicz, A. (2002). An improved Q-learning algorithm using synthetic pheromones. In From theory to practice in multi-agent systems, second international workshop of central and eastern europe on multi-agent systems, CEEMAS 2001 Cracow. Revised Papers, Lecture Notes in Artificial Intelligence LNAI-2296 (pp. 197–206). Berlin: Springer.Google Scholar
  22. Norris, J. R. (1998). Markov Chains (Cambridge Series in Statistical and Probabilistic Mathematics No. 2). Cambridge University Press, UK.Google Scholar
  23. Panait, L., & Luke, S. (2004). A pheromone-based utility model for collaborative foraging. In Proc AAMAS’04 Third International Joint Conference on Autonomous Agents and MultiAgent Systems (pp. 36–43). New York: ACM Press.Google Scholar
  24. Parunak, H. V. D. (1997). Go to the ant: Engineering principles from natural agent systems. Annals of Operations Research, 75, 69–101.CrossRefMATHGoogle Scholar
  25. Parunak, H. V. D., Purcell, M., & O’Connell, R. (2002). Digital pheromones for autonomous coordination of swarming UAV’s. In Proc. of AIAA First Technical Conference and Workshop on Unmanned Aerospace Vehicles, Systems, and Operations. American Institute of Aeronautics and Astronautics.Google Scholar
  26. Pepin, N., Simonin, O., & Charpillet, F. (2009). Intelligent tiles: Putting situated multi-agents models in real world. In Proceedings ICAART’09 International Conference on Agents and Artificial Intelligence (pp. 513–519). Setúbal, Portugal: INSTICC Press.Google Scholar
  27. Purnamadjaja, A. H., & Russell, R. A. (2010). Bi-directional pheromone communication between robots. Robotica, 28(1), 69–79.CrossRefGoogle Scholar
  28. Resnick, M. (1994). Turtles, termites, and traffic jams: Explorations in massively parallel microworlds. Cambridge, MA: MIT Press.Google Scholar
  29. Sauter, J. A., Matthews, R., Parunak, H. V. D., & Brueckner, S. (2002). Evolving adaptive pheromone path planning mechanisms. In Proc. of AAMAS’02 First International Joint Conference on Autonomous Agents and Multi-Agent Systems (pp. 434–440). New York: ACM Press.Google Scholar
  30. Sauter, J. A., Matthews, R., Parunak, H. V. D., & Brueckner, S. (2005). Performance of digital pheromones for swarming vehicle control. In Proc. of AAMAS’05 Fouth International Joint Conference on Autonomous Agents and MultiAgent Systems (pp. 903–910). New York: ACM Press.Google Scholar
  31. Sempe, F., & Drogoul, A. (2003). Adaptive patrol for a group of robots. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (pp. 2865–2869). Piscataway, NJ: IEEE Press.Google Scholar
  32. Spears, W., Spears, D., Hamann, J., & Heil, R. (2004). Distributed, physics-based control of swarms of vehicles. Autonomous Robots, 17(2–3), 137–162.CrossRefGoogle Scholar
  33. Steels, L. (1989). Cooperation between distributed agents through self-organization. In Decentralized AI- Proc. of the First European Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW-89) (pp. 175–196). Amsterdam: Elsevier Science.Google Scholar
  34. Stentz, A. (1995). The focussed D* algorithm for real-time replanning. In Proc. of the International Joint Conference on Artificial Intelligence (IJCAI) (pp. 1652–1659). San Francisco, CA: Morgan Kaufmann.Google Scholar
  35. Vaughan, R. T., Støy, K., Sukhatme, G. S., & Matarić, M. J. (2000). Whistling in the dark: cooperative trail following in uncertain localization space. In Proc. of the 4th International Conference on Autonomous Agents (Agents’00) (pp. 187–194). New York: ACM Press.Google Scholar
  36. Wagner, I., Lindenbaum, M., & Bruckstein, A. M. (1998). Efficiently searching a graph by a smell-oriented vertex process. Annals of Mathematics and Artificial Intelligence, 24, 211–223.CrossRefMATHMathSciNetGoogle Scholar
  37. Wagner, I., Lindenbaum, M., & Bruckstein, A. M. (2000). MAC vs. PC: Determinism and randomness as complementary approaches to robotic exploration of continuous unknown domains. International Journal of robotics Research, 19(1), 12–31.CrossRefGoogle Scholar
  38. Winfield, A. (2009). Towards an engineering science of robot foraging. In Distributed Autonomous Robotic Systems 8, Proceedings of the 9th International Symposium on Distributed Autonomous Robotic Systems (DARS 2008) (pp. 185–192). Berlin: Springer.Google Scholar
  39. Zhu, Q., Yan, Y., & Xing, Z. (2006). Robot path planning based on artificial potential field approach with simulated annealing. In Proceedings ISDA’06 Sixth International Conference on Intelligent Systems Design and Applications (Vol. 2, pp. 622–627). Los Alamitos, CA: IEEE Computer Society Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Olivier Simonin
    • 1
    • 2
  • François Charpillet
    • 2
  • Eric Thierry
    • 3
  1. 1.INSA Lyon, CITI-Inria Lab.VilleurbanneFrance
  2. 2.Inria Nancy Grand Est, LORIA Lab., Maia teamNancyFrance
  3. 3.ENS LyonLyonFrance

Personalised recommendations