Skip to main content
Log in

Application of coupled XFEM-BCQO in the structural optimization of a circular tunnel lining subjected to a ground motion

  • Research Article
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

A new structural optimization method of coupled extended finite element method and bound constrained quadratic optimization method (XFEM-BCQO) is adopted to quantify the optimum values of four design parameters for a circular tunnel lining when it is subjected to earthquakes. The parameters are: tunnel lining thickness, tunnel diameter, tunnel lining concrete modulus of elasticity and tunnel lining concrete density. Monte-Carlo sampling method is dedicated to construct the meta models so that to be used for the BCQO method using matlab codes. Numerical simulations of the tensile damage in the tunnel lining due to a real earthquake in the literature are created for three design cases. XFEM approach is used to show the cracks for the mentioned design cases. The results of the BCQO method for the maximum design case for the tunnel tensile damage was matching the results obtained from XFEM approach to a fair extent. The new coupled approach manifested a significant capability to predict the cracks and spalling of the tunnel lining concrete under the effects of dynamic earthquakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pescara M, Gaspari G M, Repetto L. Design of underground structures under seismic conditions: A long deep tunnel and a metro tunnel. In: Colloquium on Seismic Design of Tunnels. Torino: Geodata Engineering SpA, 2011

    Google Scholar 

  2. Hashash Y M A, Hook J J, Schmidt B, I-Chiang Yao J. Seismic design and analysis of underground structure. Journal of Tunneling and Underground Space Technology, 2001, 16(4): 247–293

    Google Scholar 

  3. Hashash Y M A, Park D, Yao J I. Ovaling deformations of circular tunnels under seismic loading: An update on seismic design and analysis of underground structures. Journal of Tunneling and Underground Space Technology, 2005, 20(5): 435–441

    Google Scholar 

  4. St John C M, Zahrah T F. Aseismic design of underground structures. Tunnelling and Underground Space Technology, 1987, 2(2): 165–197

    Google Scholar 

  5. Kawashima K. Seismic design of underground structures in soft ground: A review. In: Kusakabe, Fujita, Miyazaki, eds. Geotechnical Aspects of Underground Construction in Soft Ground. Rotterdam, 1999

  6. Fabozzi S. Behaviour of segmental tunnel lining under static and dynamic loads. Dissertation for the Doctoral Degree. Naples: University of Naples Federico II, 2017

    Google Scholar 

  7. Nariman N A, Hussain R R, Msekh M A, Karampour P. Prediction meta-models for the responses of a circular tunnel during earthquakes. Underground Space, 2019, 4(1): 31–47

    Google Scholar 

  8. Moller S C, Vermeer P A. On numerical simulation of tunnel installation. Tunnelling and Underground Space Technology (Oxford, England), 2008, 23(4): 461–475

    Google Scholar 

  9. Lekhnitskii S G. Anisotropic plates. London: Foreign Technology Div Wright-Patterson Afb Oh, 1968

    Google Scholar 

  10. Lu A Z, Zhang L Q, Zhang N. Analytic stress solutions for a circular pressure tunnel at pressure and great depth including support delay. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(3): 514–519

    Google Scholar 

  11. Yasuda N, Tsukada K, Asakura T. Elastic solutions for circular tunnel with void behind lining. Tunnelling and Underground Space Technology (Oxford, England), 2017, 70: 274–285

    Google Scholar 

  12. Han X, Xia Y. Analytic solutions of the forces and displacements for multicentre circular arc tunnels. Hindawi Mathematical Problems in Engineering, 2018, 2018: 8409129

    MathSciNet  Google Scholar 

  13. Schmid H. Static problems of tunnels and pressure tunnels construction and their mutual relationships. Berlin: Springer, 1926

    Google Scholar 

  14. Morgan H. A contribution to the analysis of stress in a circular tunnel. Geotechnique, 1961, 11(1): 37–46

    Google Scholar 

  15. Windels R. Kreisring im elastischen continuum. Bauingenieur, 1967, 42: 429–439

    Google Scholar 

  16. Duddeck H, Erdmann J. On structural design models for tunnels in soft soil. Underground Space (United States), 1985, 9(5–6): 246–259

    Google Scholar 

  17. Do N A, Dias D, Oreste P, Djeran-Maigre I. A new numerical approach to the hyperstatic reaction method for segmental tunnel linings. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(15): 1617–1632

    Google Scholar 

  18. Vu Minh N, Broere W, Bosch J W. Structural analysis for shallow tunnels in soft soils. International Journal of Geomechanics, 2017, 17(8): 04017038

    Google Scholar 

  19. Ghasemi H, Park H S, Rabczuk T. A level-set based IGA formulation for topology optimization of flexoelectric materials. Computer Methods in Applied Mechanics and Engineering, 2017, 313: 239–258

    MathSciNet  Google Scholar 

  20. Ghasemi H, Brighenti R, Zhuang X, Muthu J, Rabczuk T. Optimum fiber content and distribution in fiber-reinforced solids using a reliability and NURBS based sequential optimization approach. Structural and Multidisciplinary Optimization, 2015, 51(1): 99–112

    MathSciNet  Google Scholar 

  21. Zhang C, Nanthakumar S S, Lahmer T, Rabczuk T. Multiple cracks identification for piezoelectric structures. International Journal of Fracture, 2017, 206(2): 151–169

    Google Scholar 

  22. Nanthakumar S, Zhuang X, Park H, Rabczuk T. Topology optimization of flexoelectric structures. Journal of the Mechanics and Physics of Solids, 2017, 105: 217–234

    MathSciNet  Google Scholar 

  23. Nanthakumar S, Lahmer T, Zhuang X, Park H S, Rabczuk T. Topology optimization of piezoelectric nanostructures. Journal of the Mechanics and Physics of Solids, 2016, 94: 316–335

    MathSciNet  Google Scholar 

  24. Nanthakumar S, Lahmer T, Zhuang X, Zi G, Rabczuk T. Detection of material interfaces using a regularized level set method in piezoelectric structures. Inverse Problems in Science and Engineering, 2016, 24(1): 153–176

    MathSciNet  Google Scholar 

  25. Nanthakumar S, Valizadeh N, Park H, Rabczuk T. Surface effects on shape and topology optimization of nanostructures. Computational Mechanics, 2015, 56(1): 97–112

    MathSciNet  MATH  Google Scholar 

  26. Nanthakumar S S, Lahmer T, Rabczuk T. Detection of flaws in piezoelectric structures using extended FEM. International Journal for Numerical Methods in Engineering, 2013, 96(6): 373–389

    MathSciNet  MATH  Google Scholar 

  27. Vu-Bac N, Lahmer T, Zhuang X, Nguyen-Thoi T, Rabczuk T. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31

    Google Scholar 

  28. Vu-Bac N, Silani M, Lahmer T, Zhuang X, Rabczuk T. A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites. Computational Materials Science, 2015, 96: 520–535

    Google Scholar 

  29. Vu-Bac N, Rafiee R, Zhuang X, Lahmer T, Rabczuk T. Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters. Composites. Part B, Engineering, 2015, 68: 446–464

    Google Scholar 

  30. Rabczuk T, Akkermann J, Eibl J. A numerical model for reinforced concrete structures. International Journal of Solids and Structures, 2005, 42(5–6): 1327–1354

    MATH  Google Scholar 

  31. Bažant Z P. Why continuum damage is nonlocal: Micromechanics arguments. Journal of Engineering Mechanics, 1991, 117(5): 1070–1087

    Google Scholar 

  32. Thai T Q, Rabczuk T, Bazilevs Y, Meschke G. A higher-order stress-based gradient-enhanced damage model based on isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 2016, 304: 584–604

    MathSciNet  MATH  Google Scholar 

  33. Fleck N A, Hutchinson J W. A phenomenological theory for strain gradient effects in plasticity. Journal of the Mechanics and Physics of Solids, 1993, 41(12): 1825–1857

    MathSciNet  MATH  Google Scholar 

  34. Rabczuk T, Eibl J. Simulation of high velocity concrete fragmentation using SPH/MLSPH. International Journal for Numerical Methods in Engineering, 2003, 56(10): 1421–1444

    MATH  Google Scholar 

  35. Rabczuk T, Eibl J, Stempniewski L. Numerical analysis of high speed concrete fragmentation using a meshfree Lagrangian method. Engineering Fracture Mechanics, 2004, 71(4–6): 547–556

    Google Scholar 

  36. Rabczuk T, Xiao S P, Sauer M. Coupling of meshfree methods with nite elements: Basic concepts and test results. Communications in Numerical Methods in Engineering, 2006, 22(10): 1031–1065

    MathSciNet  MATH  Google Scholar 

  37. Rabczuk T, Eibl J. Modelling dynamic failure of concrete with meshfree methods. International Journal of Impact Engineering, 2006, 32(11): 1878–1897

    Google Scholar 

  38. Etse G, Willam K. Failure analysis of elastoviscoplastic material models. Journal of Engineering Mechanics, 1999, 125(1): 60–69

    Google Scholar 

  39. Miehe C, Hofacker M, Welschinger F. A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering, 2010, 199(45–48): 2765–2778

    MathSciNet  MATH  Google Scholar 

  40. Amiri F, Millan D, Arroyo M, Silani M, Rabczuk T. Fourth order phase-field model for local max-ent approximants applied to crack propagation. Computer Methods in Applied Mechanics and Engineering, 2016, 312(C): 254–275

    MathSciNet  Google Scholar 

  41. Areias P, Rabczuk T, Msekh M. Phase-field analysis of finite-strain plates and shells including element subdivision. Computer Methods in Applied Mechanics and Engineering, 2016, 312(C): 322–350

    MathSciNet  Google Scholar 

  42. Msekh M A, Silani M, Jamshidian M, Areias P, Zhuang X, Zi G, He P, Rabczuk T. Predictions of J integral and tensile strength of clay/epoxy nanocomposites material using phase-eld model. Composites. Part B, Engineering, 2016, 93: 97–114

    Google Scholar 

  43. Hamdia K, Msekh M A, Silani M, Vu-Bac N, Zhuang X, Nguyen-Thoi T, Rabczuk T. Uncertainty quantication of the fracture properties of polymeric nanocomposites based on phase field modeling. Composite Structures, 2015, 133: 1177–1190

    Google Scholar 

  44. Msekh M A, Sargado M, Jamshidian M, Areias P, Rabczuk T. ABAQUS implementation of phase-field model for brittle fracture. Computational Materials Science, 2015, 96: 472–484

    Google Scholar 

  45. Amiri F, Millán D, Shen Y, Rabczuk T, Arroyo M. Phase-field modeling of fracture in linear thin shells. Theoretical and Applied Fracture Mechanics, 2014, 69: 102–109

    Google Scholar 

  46. Hamdia K M, Zhuang X, He P, Rabczuk T. Fracture toughness of polymeric particle nanocomposites: Evaluation of Models performance using Bayesian method. Composites Science and Technology, 2016, 126: 122–129

    Google Scholar 

  47. Rabczuk T, Belytschko T, Xiao S P. Stable particle methods based on Lagrangian kernels. Computer Methods in Applied Mechanics and Engineering, 2004, 193(12–14): 1035–1063

    MathSciNet  MATH  Google Scholar 

  48. Rabczuk T, Belytschko T. Adaptivity for structured meshfree particle methods in 2D and 3D. International Journal for Numerical Methods in Engineering, 2005, 63(11): 1559–1582

    MathSciNet  MATH  Google Scholar 

  49. Nguyen V P, Rabczuk T, Bordas S, Duflot M. Meshless methods: A review and computer implementation aspects. Mathematics and Computers in Simulation, 2008, 79(3): 763–813

    MathSciNet  MATH  Google Scholar 

  50. Zhuang X, Cai Y, Augarde C. A meshless sub-region radial point interpolation method for accurate calculation of crack tip elds. Theoretical and Applied Fracture Mechanics, 2014, 69: 118–125

    Google Scholar 

  51. Zhuang X, Zhu H, Augarde C. An improved meshless Shepard and least squares method possessing the delta property and requiring no singular weight function. Computational Mechanics, 2014, 53(2): 343–357

    MathSciNet  MATH  Google Scholar 

  52. Zhuang X, Augarde C, Mathisen K. Fracture modelling using meshless methods and level sets in 3D: Framework and modelling. International Journal for Numerical Methods in Engineering, 2012, 92(11): 969–998

    MathSciNet  MATH  Google Scholar 

  53. Chen L, Rabczuk T, Bordas S, Liu G R, Zeng K Y, Kerfriden P. Extended finite element method with edge-based strain smoothing (Esm-XFEM) for linear elastic crack growth. Computer Methods in Applied Mechanics and Engineering, 2012, 209–212(4): 250–265

    MathSciNet  MATH  Google Scholar 

  54. Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601–620

    MATH  Google Scholar 

  55. Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131–150

    MathSciNet  MATH  Google Scholar 

  56. Vu-Bac N, Nguyen-Xuan H, Chen L, Lee C K, Zi G, Zhuang X, Liu G R, Rabczuk T. A phantom-node method with edge-based strain smoothing for linear elastic fracture mechanics. Journal of Applied Mathematics, 2013, 2013: 978026

    MathSciNet  MATH  Google Scholar 

  57. Bordas S P A, Natarajan S, Kerfriden P, Augarde C E, Mahapatra D R, Rabczuk T, Pont S D. On the performance of strain smoothing for quadratic and enriched finite element approximations (XFEM/GFEM/PUFEM). International Journal for Numerical Methods in Engineering, 2011, 86(4–5): 637–666

    MATH  Google Scholar 

  58. Bordas S P A, Rabczuk T, Hung N X, Nguyen V P, Natarajan S, Bog T, Quan D M, Hiep N V. Strain smoothing in FEM and XFEM. Computers & Structures, 2010, 88(23–24): 1419–1443

    Google Scholar 

  59. Rabczuk T, Zi G, Gerstenberger A, Wall W A. A new crack tip element for the phantom node method with arbitrary cohesive cracks. International Journal for Numerical Methods in Engineering, 2008, 75(5): 577–599

    MATH  Google Scholar 

  60. Chau-Dinh T, Zi G, Lee P S, Rabczuk T, Song J H. Phantom-node method for shell models with arbitrary cracks. Computers & Structures, 2012, 92–93: 242–256

    Google Scholar 

  61. Song J H, Areias P M A, Belytschko T. A method for dynamic crack and shear band propagation with phantom nodes. International Journal for Numerical Methods in Engineering, 2006, 67(6): 868–893

    MATH  Google Scholar 

  62. Areias P M A, Song J H, Belytschko T. Analysis of fracture in thin shells by overlapping paired elements. Computer Methods in Applied Mechanics and Engineering, 2006, 195(41–43): 5343–5360

    MATH  Google Scholar 

  63. Zamani R, Motahari M R. The effect of soil stiffness variations on Tunnel Lining Internal Forces under seismic loading and Case comparison with existing analytical methods. Ciência e Natura, Santa Maria, 2015, 37(1): 476–487

    Google Scholar 

  64. Möller S C. Tunnel induced settlements and structural forces in linings. Dissertation for the Doctoral Degree. Stuttgart: University of Stuttgart, 2006

    Google Scholar 

  65. Lu Q, Chen S, Chan Y, He C. Comparison between numerical and analytical analysis of the dynamic behavior of circular tunnels. Earth Sciences Research Journal, 2018, 22(2): 119–128

    Google Scholar 

  66. Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D. Global Sensitivity Analysis: The Primer. Hoboken: John Wiley & Sons Ltd., 2008

    MATH  Google Scholar 

  67. Burhenne S, Jacob D, Henze G P. Sampling based on Sobol sequences for monte carlo techniques applied to building simulations. In: The 12th Conference of International Building Performance Simulation Association. Sydney, 2011

  68. Myers R H, Montgomery D C. Response Surface Methodology: Product and Process Op-timization Using Designed Experiments. 2nd ed. New York: John Wiley & Sons, 2002

    MATH  Google Scholar 

  69. Zhao J, Tiede C. Using a variance-based sensitivity analysis for analyzing the relation between measurements and unknown parameters of a physical model. Nonlinear Processes in Geophysics, 2011, 18(3): 269–276

    Google Scholar 

  70. Khuril A I, Mukhopadhyay S. Response surface methodology. WIREs Computational Statistics, 2010, 2(2): 128–149

    Google Scholar 

  71. Luenberger D G, Ye Y. Linear and Non-linear programming. In: International Series in Operations Research & Management Science. Palo Alto, CA: Stanford University, 2015

    Google Scholar 

  72. Box M J. A new method of constrained optimization and a comparison with other methods. Computer Journal, 1965, 8(1): 42–52

    MathSciNet  MATH  Google Scholar 

  73. Hunt B R, Lipsman R L, Rosenberg J M. A Guide to MATLAB for Beginner and Experienced Users. Cambridge: Cambridge University Press, 2006

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazim Abdul Nariman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nariman, N.A., Ramadan, A.M. & Mohammad, I.I. Application of coupled XFEM-BCQO in the structural optimization of a circular tunnel lining subjected to a ground motion. Front. Struct. Civ. Eng. 13, 1495–1509 (2019). https://doi.org/10.1007/s11709-019-0574-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-019-0574-y

Keywords

Navigation