Skip to main content

Effect of wood dust type on mechanical properties, wear behavior, biodegradability, and resistance to natural weathering of wood-plastic composites

Abstract

The present work reports the inclusion of different proportions of Mango/Sheesham/Mahogany/Babool dust to polypropylene for improving mechanical, wear behavior and biodegradability of wood-plastic composite (WPC). The wood dust (10%, 15%, 20% by weight) was mixed with polypropylene granules and WPCs were prepared using an injection molding technique. The mechanical, wear, and morphological characterizations of fabricated WPCs were carried out using standard ASTM methods, pin on disk apparatus, and scanning electron microscopy (SEM), respectively. Further, the biodegradability and resistance to natural weathering of WPCs were evaluated following ASTM D5338-11 and ASTM D1435-99, respectively. The WPCs consisting of Babool and Sheesham dust were having superior mechanical properties whereas the WPCs consisting of Mango and Mahogany were more wear resistant. It was found that increasing wood powder proportion results in higher Young’s modulus, lesser wear rate, and decreased stress at break. The WPCs made of Sheesham dust were least biodegradable. It was noticed that the biodegradability corresponds with resistance to natural weathering; more biodegradable WPCs were having the lesser resistance to natural weathering.

This is a preview of subscription content, access via your institution.

References

  1. Lei B, Zhang Y, He Y, Xie Y, Xu B, Lin Z, Huang L, Tan S, Wang M, Cai X. Preparation and characterization of wood-plastic composite reinforced by graphitic carbon nitride. Materials & Design, 2015, 66: 103–109

    Article  Google Scholar 

  2. Homkhiew C, Ratanawilai T, Thongruang W. Composites from recycled polypropylene and rubberwood flour: Effects of composition on mechanical properties. Journal of Thermoplastic Composite Materials, 2015, 28(2): 179–194

    Article  Google Scholar 

  3. Shahinur S, Ullah A S. Quantifying the uncertainty associated with the material properties of a natural fiber. Procedia CIRP, 2017, 61: 541–546

    Article  Google Scholar 

  4. Väisänen T, Das O, Tomppo L. A review on new bio-based constituents for natural fiber-polymer composites. Journal of Cleaner Production, 2017, 149: 582–596

    Article  Google Scholar 

  5. Sanjay M R, Madhu P, Jawaid M, Senthamaraikannan P, Senthil S, Pradeep S. Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production, 2018, 172: 566–581

    Article  Google Scholar 

  6. Mittal V, Saini R, Sinha S. Natural fiber-mediated epoxy composites—a review. Composites. Part B, Engineering, 2016, 99: 425–435

    Article  Google Scholar 

  7. Sombatsompop N, Prapruit W, Chaochanchaikul K, Pulngern P, Rosarpitak V. Effects of cross section design and testing conditions on the flexural properties of wood/PVC composite beams. Journal of Vinyl & Additive Technology, 2010, 16(1): 33–41

    Article  Google Scholar 

  8. Najafi S K, Hamidinia E, Tajvidi M. Mechanical properties of composites from sawdust and recycled plastics. Journal of Applied Polymer Science, 2006, 100(5): 3641–3645

    Article  Google Scholar 

  9. Mijiyawa F, Koffi D, Kokta B V, Erchiqui F. Formulation and tensile characterization of wood-plastic composites: Polypropylene reinforced by birch and aspen fibers for gear applications. Journal of Thermoplastic Composite Materials, 2015, 28(12): 1675–1692

    Article  Google Scholar 

  10. Lisperguer J, Bustos X, Saravia Y. Thermal and mechanical properties of wood flour-polystyrene blends from postconsumer plastic waste. Journal of Applied Polymer Science, 2011, 119(1): 443–451

    Article  Google Scholar 

  11. Li X, Lei B, Lin Z, Huang L, Tan S, Cai X. The utilization of bamboo charcoal enhances wood plastic composites with excellent mechanical and thermal properties. Materials & Design, 2014, 53: 419–424

    Article  Google Scholar 

  12. Ratanawilai T, Taneerat K. Alternative polymeric matrices for wood-plastic composites: Effects on mechanical properties and resistance to natural weathering. Construction & Building Materials, 2018, 172: 349–357

    Article  Google Scholar 

  13. Bambach M R. Compression strength of natural fibre composite plates and sections of flax, jute and hemp. Thin-walled Structures, 2017, 119: 103–113

    Article  Google Scholar 

  14. Ramachandran M, Bansal S, Raichurkar P. Experimental study of bamboo using banana and linen fibre reinforced polymeric composites. Perspectives on Science, 2016, 8: 313–316

    Article  Google Scholar 

  15. Sanjay M R, Yogesha B. Studies on natural/glass fiber reinforced polymer hybrid composites: An evolution. Materials Today: Proceedings, 2017, 4(2): 2739–2747

    Google Scholar 

  16. Singh J I P, Dhawan V, Singh S, Jangid K. Study of effect of surface treatment on mechanical properties of natural fiber reinforced composites. Materials Today: Proceedings, 2017, 4(2): 2793–2799

    Google Scholar 

  17. Wambua P, Ivens J, Verpoest I. Natural fibers: Can they replace glass in fibre reinforced plastics? Composites Science and Technology, 2003, 63(9): 1259–1264

    Article  Google Scholar 

  18. Tserki V, Zafeiropoulos N E, Simon F, Panayiotou C. A study of the effect of acetylation and propionylation surface treatment on natural fibres. Composites. Part A, Applied Science and Manufacturing, 2005, 36(8): 1110–1118

    Article  Google Scholar 

  19. Eshraghi A, Khademieslam H, Ghasemi I, Talaiepoor M. Effect of weathering on the properties of hybrid composite based on polyethylene, woodflour, and nanoclay. BioResources, 2013, 8: 201–210

    Google Scholar 

  20. Stark N M, Matuana L M. Influence of photostabilizers on wood floure\3-HDPE composites exposed to xenon-arc radiationwith and without water spray. Polymer Degradation & Stability, 2006, 91(12): 3048–3056

    Article  Google Scholar 

  21. Li Y, Mai Y W, Ye L. Sisal fibre and its composites: A review of recent developments. Composites Science and Technology, 2000, 60(11): 2037–2055

    Article  Google Scholar 

  22. Wong S, Shanks R, Hodzic A. Interfacial improvements in poly (3-hydroxybutyrate)-flax fibre composites with hydrogen bonding additives. Composites Science and Technology, 2004, 64(9): 1321–1330

    Article  Google Scholar 

  23. Van de Weyenberg I, Ivens J, De Coster A, Kino B, Baetens E, Verpoest I. Influence of processing and chemical treatment of flax fibres on their composites. Composites Science and Technology, 2003, 63(9): 1241–1246

    Article  Google Scholar 

  24. Gassan J. A study of fibre and interface parameters affecting the fatigue behaviour of natural fibre composites. Composites. Part A, Applied Science and Manufacturing, 2002, 33(3): 369–374

    MathSciNet  Article  Google Scholar 

  25. Baiardo M, Zini E, Scandola M. Flax fibre-polyester composites. Composites. Part A, Applied Science and Manufacturing, 2004, 35(6): 703–710

    Article  Google Scholar 

  26. Markarian J. Additive developments aid growth in wood-plastic composites. Plastics Additives & Compounding, 2002, 4(11): 18–21

    Article  Google Scholar 

  27. Amir N, Abidin K A Z, Shiri F B M. Effects of fibre configuration on mechanical properties of banana fibre/PP/MAPP natural fibre reinforced polymer composite. Procedia Engineering, 2017, 184: 573–580

    Article  Google Scholar 

  28. Yang T H, Yang T H, Chao W C, Leu S Y. Characterization of the property changes of extruded wood—plastic composites during year-round subtropical weathering. Construction & Building Materials, 2015, 88: 159–168

    Article  Google Scholar 

  29. Taib R M, Zauzi S N A, Ishak Z A M, Rozman H D. Effects of photo-stabilizers on the properties of recycled high-density polyethylene (HDPE)/wood flour (WF) composites exposed to natural weathering. Malaysian Polymer Journal, 2010, 5: 193–203

    Google Scholar 

  30. Lopez J L, Sain M, Cooper P. Performance of natural-fiber-plastic composites under stress for outdoor applications: Effect of moisture, temperature, and ultraviolet light exposure. Journal of Applied Polymer Science, 2006, 99(5): 2570–2577

    Article  Google Scholar 

  31. Lau K T, Hung P Y, Zhu M H, Hui D. Properties of natural fibre composites for structural engineering applications. Composites. Part B, Engineering, 2018, 136: 222–233

    Article  Google Scholar 

  32. Pritchard G. Two technologies merge: Wood-plastic composites. Plastics Additives & Compounding, 2004, 6(4): 18–21

    Article  Google Scholar 

  33. Oksman K, Selin J F. Plastics and composites from polylactic acid. In: Wallenberger F T, Weston N E, eds. Natural Fibers, Plastics and Composites, Vol 1. Norwell: Kluwer Academic Press, 2004

    Chapter  Google Scholar 

  34. Bledzki A K, Reihmane S, Gassan J. Thermoplastics reinforced with wood fillers: A literature review. Polymer-Plastic Technology and Engineering, 1998, 37(4): 451–468

    Article  Google Scholar 

  35. Turku I, Keskisaari A, Kärki T, Puurtinen A, Marttila P. Characterization of wood plastic composites manufactured from recycled plastic blends. Composite Structures, 2017, 161: 469–476

    Article  Google Scholar 

  36. Zhang Y, Xue P, Ding Y, Jia M, Cai J, Jin X. Improvement of mechanical properties of wood-plastic composite floors based on the optimum structural design. Acta Mechanica Solida Sinica, 2016, 29(4): 444–454

    Article  Google Scholar 

  37. Sommerhuber P F, Wenker J L, Rüter S, Krause A. Life cycle assessment of wood-plastic composites: Analysing alternative materials and identifying an environmental sound end-of-life option. Resources, Conservation and Recycling, 2017, 117: 235–248

    Article  Google Scholar 

  38. Schirp A, Su S. Effectiveness of pre-treated wood particles and halogen-free flame retardants used in wood-plastic composites. Polymer Degradation & Stability, 2016, 126: 81–92

    Article  Google Scholar 

  39. Friedrich D, Luible A. Investigations on ageing of wood-plastic composites for outdoor applications: A meta-analysis using empiric data derived from diverse weathering trials. Construction & Building Materials, 2016, 124: 1142–1152

    Article  Google Scholar 

  40. Migneault S, Koubaa A, Perré P, Riedl B. Effects of wood fiber surface chemistry on strength of wood-plastic composites. Applied Surface Science, 2015, 343: 11–18

    Article  Google Scholar 

  41. Catto A L, Montagna L S, Almeida S H, Silveira R, Santana R M C. Wood plastic composites weathering: Effects of compatibilization on biodegradation in soil and fungal decay. International Biodeterioration & Biodegradation, 2016, 109: 11–22

    Article  Google Scholar 

  42. Badji C, Soccalingame L, Garay H, Bergeret A, Bénézet J C. Influence of weathering on visual and surface aspect of wood plastic composites: Correlation approach with mechanical properties and microstructure. Polymer Degradation & Stability, 2017, 137: 162–172

    Article  Google Scholar 

  43. Peng Y, Liu R, Cao J. Characterization of surface chemistry and crystallization behavior of polypropylene composites reinforced with wood flour, cellulose, and lignin during accelerated weathering. Applied Surface Science, 2015, 332: 253–259

    Article  Google Scholar 

  44. Butylina S, Hyvärinen M, Kärki T. A study of surface changes of wood-polypropylene composites as the result of exterior weathering. Polymer Degradation & Stability, 2012, 97(3): 337–345

    Article  Google Scholar 

  45. Ren Y, Wang Y, Wang L, Liu T. Evaluation of intumescent fire retardants and synergistic agents for use in wood flour/recycled polypropylene composites. Construction & Building Materials, 2015, 76: 273–278

    Article  Google Scholar 

  46. Tamrakar S, Lopez-Anido R A. Water absorption of wood polypropylene composite sheet piles and its influence on mechanical properties. Construction & Building Materials, 2011, 25(10): 3977–3988

    Article  Google Scholar 

  47. Brandt C W, Fridley K J. Load-duration behavior of wood-plastic composites. Journal of Materials in Civil Engineering, 2003, 15(6): 524–536

    Article  Google Scholar 

  48. Lewandowski K, Piszczek K, Zajchowski S, Mirowski J. Rheological properties of wood polymer composites at high shear rates. Polymer Testing, 2016, 51: 58–62

    Article  Google Scholar 

  49. Mysiukiewicz O, Sterzyński T. Influence of water on tribological properties of wood-polymer composites. Archives of Mechanical Technology and Materials, 2017, 37(1): 79–84

    Article  Google Scholar 

  50. Chin C W, Yousif B F. Potential of kenaf fibers as reinforcement for tribological applications. Wear, 2009, 267(9–10): 1550–1557

    Article  Google Scholar 

  51. Yousif B F, Lau S T W, McWilliam S. Polyester composite based on betelnut fiber for tribological application. Tribology International, 2010, 43(1–2): 503–511

    Article  Google Scholar 

  52. El-Sayed A A, El-Sherbiny M G, Abo-El-Ezz A S, Aggag G A. Friction and wear properties of polymeric composite materials for bearing applications. Wear, 1995, 184(1): 45–53

    Article  Google Scholar 

  53. Yousif B F, El-Tayeb N S M. Wet adhesive wear characteristics of untreated oil palm fiber reinforced polyester and treated oil palm fiber reinforced polyester composites using the pin on disc and block on ring techniques. Journal of Engineering Tribology, 2009, 224: 123–131

    Google Scholar 

  54. Umar N, Jamil H, Low K O. Adhesive wear and frictional performance of bamboo fibers reinforced epoxy. International Journal of Trichology, 2012, 47: 122–133

    Google Scholar 

  55. Bijwe J, Indumathi J, John Rajesh J, Fahim M. Friction and wear behavior of polyetherimide composites in various wear modes. Wear, 2001, 249(8): 715–726

    Article  Google Scholar 

  56. Singh N, Yousif B F, Rilling D. Tribological characteristics of sustainable fiber-reinforced thermoplastic composites under wet adhesive wear. Tribology Transactions, 2011, 54(5): 736–748

    Article  Google Scholar 

  57. Petchwattana N, Covavisaruch S. Mechanical and morphological properties of wood plastic biocomposites prepared from toughened poly (lactic acid) and rubber wood sawdust (hevea brasiliensis). Journal of Bionics Engineering, 2014, 11(4): 630–637

    Article  Google Scholar 

  58. Muasher M, Sain M. The efficacy of photostabilizers on the color change of wood filled plastic composites. Polymer Degradation & Stability, 2006, 91(5): 1156–1165

    Article  Google Scholar 

  59. Du H, Wang W, Wang Q, Zhang Z, Sui S, Zhang Y. Effects of pigments on the UV degradation of wood-flour/HDPE composites. Journal of Applied Polymer Science, 2010, 118: 1068–1076

    Google Scholar 

  60. Yang T H, Yang T H, Chao W C, Leu S Y. Characterization of the property changes of extruded wood—plastic composites during year-round subtropical weathering. Construction & Building Materials, 2015, 88: 159–168

    Article  Google Scholar 

  61. Stark N M, Matuana L M. Influence of photostabilizers on wood floure HDPE composites exposed to xenon-arc radiation with and without water spray. Polymer Degradation & Stability, 2006, 91(12): 3048–3056

    Article  Google Scholar 

  62. Adhikary K B, Pang S, Staiger M P. Dimensional stability and mechanical behaviour of wood-plastic composites based on recycled and virgin highdensity polyethylene (HDPE). Composites. Part B, Engineering, 2008, 39(5): 807–815

    Article  Google Scholar 

  63. Ratanawilai T, Lekanukit P, Urapantamas S. Effect of rubberwood and palm oil content on the properties of wood-polyvinyl chloride composites. Journal of Thermoplastic Composite Materials, 2014, 27(6): 719–730

    Article  Google Scholar 

  64. Deka B K, Maji T K. Effect of silica nanopowder on the properties of wood flour/polymer composite. Polymer Engineering and Science, 2012, 52(7): 1516–1523

    Article  Google Scholar 

  65. Sultan M T, Haque M M, Maniruzzaman M, Alam M A. Composites of polypropylene with pulque fibres: Morphology, thermal and mechanical properties. Journal of Thermoplastic Composite Materials, 2015, 28(12): 1615–1626

    Article  Google Scholar 

  66. Gilbert M. Brydson’s Plastics Materials. 8th ed. Oxford: Elsevier Inc., 2017

    Google Scholar 

  67. Prachayawarakorn J, Khamsri J, Chaochanchaikul K, Sombatsompop N. Effects of compatibilizer type and rubber-wood sawdust content on the mechanical, morphological, and thermal properties of PVC/LDPE blend. Journal of Applied Polymer Science, 2006, 102(1): 598–606

    Article  Google Scholar 

  68. Vu-Bac N, Silani M, Lahmer T, Zhuang X, Rabczuk T. A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites. Computational Materials Science, 2015, 96: 520–535

    Article  Google Scholar 

  69. Vu-Bac N, Lahmer T, Keitel H, Zhao J, Zhuang X, Rabczuk T. Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations. Mechanics of Materials, 2014, 68: 70–84

    Article  Google Scholar 

  70. Vu-Bac N, Lahmer T, Zhang Y, Zhuang X, Rabczuk T. Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs). Composites. Part B, Engineering, 2014, 59: 80–95

    Article  Google Scholar 

  71. Vu-Bac N, Rafiee R, Zhuang X, Lahmer T, Rabczuk T. Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters. Composites. Part B, Engineering, 2015, 68: 446–464

    Article  Google Scholar 

  72. Vu-Bac N, Lahmer T, Zhuang X, Nguyen-Thoi T, Rabczuk T. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31

    Article  Google Scholar 

  73. Enamul Hoque M, Aminudin M A M, Jawaid M, Islam M S, Saba N, Paridah M T. Physical, mechanical, and biodegradable properties of meranti wood polymer composites. Materials & Design, 2014, 64: 743–749

    Article  Google Scholar 

  74. Khudari Bek Y, Hamdia K M, Rabczuk T, Könke C. Micromechanical model for polymeric nano-composites material based on SBFEM. Composite Structures, 2018, 194: 516–526

    Article  Google Scholar 

  75. Badawy M F, Msekh M A, Hamdia K M, Steiner M K, Lahmer T, Rabczuk T. Hybrid nonlinear surrogate models for fracture behavior of polymeric nanocomposites. Probabilistic Engineering Mechanics, 2017, 50: 64–75

    Article  Google Scholar 

  76. Hamdia K M, Ghasemi H, Zhuang X, Alajlan N, Rabczuk T. Sensitivity and uncertainty analysis for flexoelectric nanostructures. Computer Methods in Applied Mechanics and Engineering, 2018, 337: 95–109

    MathSciNet  Article  MATH  Google Scholar 

  77. Hamdia K M, Silani M, Zhuang X, He P, Rabczuk T. Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions. International Journal of Fracture, 2017, 206(2): 215–227

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajitanshu Vedrtnam.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Vedrtnam, A. & Pawar, S.J. Effect of wood dust type on mechanical properties, wear behavior, biodegradability, and resistance to natural weathering of wood-plastic composites. Front. Struct. Civ. Eng. 13, 1446–1462 (2019). https://doi.org/10.1007/s11709-019-0568-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-019-0568-9

Keywords

  • wood-plastic composites
  • mechanical testing
  • wear
  • biodegradability
  • injection molding
  • weathering