Skip to main content
Log in

Pore structure of cementitious material enhanced by graphitic nanomaterial: a critical review

  • Review
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

Carbon nano tubes (CNT) has been introduced as an efficient nanomaterial in order to improve the mechanical and durability properties of concrete. The effect of CNT on the microstructures of cementitious materials has been widely reported. This paper combines a critical review on the effect of CNTon the pore and microstructure of cement composite with a discussion on the porosity measurement of pastes containing CNT using mercury intrusion porosimetry techniques (MIP). It was found that, surface treatment by H2SO4 and HNO3 solution forms carboxyl acid groups on CNTs’ surfaces that lead to the improvement of reinforcement. In this scope, this review paper involves analyzing the effect of CNT on the microstructure and the pore structure of cementitious materials. The existing methods of measuring the porosity of cementitious material are reviewed, in particular, the contact angle measurement is discussed in detail in which the most effective parameters and possible errors of calculation is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Olivier J, Janssens-Maenhout G, Muntean M, Peters J. Trends in global CO2 emissions: 2015 Report. PBL Netherlands Environmental Assessment Agency, 2015, report number: JRC 98184

  2. Marceau M, Nisbet M A, van Geem M G. Life cycle inventory of portland cement manufacture. Portland Cement Association Skokie, 2006, PCA R&D Serial No. 2095b

  3. Ramezanianpour A A, Ghahari S A, Esmaeili M. Effect of combined carbonation and chloride ion ingress by an accelerated test method on microscopic and mechanical properties of concrete. Construction & Building Materials, 2014, 58: 138–146

    Article  Google Scholar 

  4. Heikal M, Abd El Aleem S, Morsi W M. Durability of composite cements containing granulated blast-furnace slag and silica nanoparticles. Indian Journal of Engineering and Materials Sciences, 2016, 23(1): 88–100

    Google Scholar 

  5. Abd El Aziz M, Abd El Aleem S, Heikal M, El Didamony H. Hydration and durability of sulphate-resisting and slag cement blends in Caron’s Lake water. Cement and Concrete Research, 2005, 35(8): 1592–1600

    Article  Google Scholar 

  6. Ghahari S A, Ramezanianpour A M, Ramezanianpour A A, Esmaeili M. An accelerated test method of simultaneous carbonation and chloride ion ingress: durability of silica fume concrete in severe environments. Advances in Materials Science and Engineering, 2016, 2016: 1650979

    Article  Google Scholar 

  7. Assi L, Ghahari S A, Deaver E E, Leaphart D, Ziehl P. Improvement of the early and final compressive strength of fly ash-based geopolymer concrete at ambient conditions. Construction & Building Materials, 2016, 123: 806–813

    Article  Google Scholar 

  8. Ahlborn T. Sustainability for the concrete bridge engineering community. ASPIRE, 2008, 15–19

    Google Scholar 

  9. Ramezanianpour A A, Ghahari S A, Khazaie A. Feasibility Study on Production and Sustainability of Poly Propylene Fiber Reinforced Concrete Ties Based on a Value Engineering Survey. In: The 3rd International Conference on Sustainable Construction Materials and Technologies (SCMT3). 2013. Coventry University, University of Wisconsin

    Google Scholar 

  10. Ramezanianpour A M, Esmaeili K, Ghahari S A, Ramezanianpour AA. Influence of initial steam curing and different types of mineral additives on mechanical and durability properties of self-compacting concrete. Construction & Building Materials, 2014, 73: 187–194

    Article  Google Scholar 

  11. Mackechnie J R, Alexander M G. Using durability to enhance concrete sustainability. Journal of Green building, 2009, 4(3): 52–60

    Article  Google Scholar 

  12. Abd El-aleem Mohamed S, Abd El-rahman Ragab Khalil. Physicomechanical properties and microstructure of blended cement incorporating nano-silica. International Journal of Engineering Research and Technology, 2014, 3(7): 339–358

    Google Scholar 

  13. Abd El. Aleem S, Heikal M, Morsi W M. Hydration characteristic, thermal expansion and microstructure of cement containing nanosilica. Construction & Building Materials, 2014, 59(0): 151–160

    Article  Google Scholar 

  14. Heikal M, Abd El-Aleem S, Morsi W M. Characteristics of blended cements containing nano-silica. HBRC Journal, 2013, 9(3): 243–255

    Article  Google Scholar 

  15. Ghafari E, Costa H, Júlio E, Portugal A, Durães L. The effect of nanosilica addition on flowability, strength and transport properties of ultra high performance concrete. Materials & Design, 2014, 59: 1–9

    Article  Google Scholar 

  16. Ghafari E, Costa H, Júlio E. Critical review on eco-efficient ultra high performance concrete enhanced with nano-materials. Construction & Building Materials, 2015, 101(Part 1): 201–208

    Article  Google Scholar 

  17. Lu L, Ouyang D, Xu W. Mechanical properties and durability of ultra high strength concrete incorporating multi-walled carbon nanotubes. Materials (Basel), 2016, 9(6): 419

    Article  Google Scholar 

  18. Tamimi A, Hassan N M, Fattah K, Talachi A. Performance of cementitious materials produced by incorporating surface treated multiwall carbon nanotubes and silica fume. Construction & Building Materials, 2016, 114: 934–945

    Article  Google Scholar 

  19. Eftekhari M, Mohammadi S. Multiscale dynamic fracture behavior of the carbon nanotube reinforced concrete under impact loading. International Journal of Impact Engineering, 2016, 87: 55–64

    Article  Google Scholar 

  20. Nochaiya T, Chaipanich A. Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials. Applied Surface Science, 2011, 257(6): 1941–1945

    Article  Google Scholar 

  21. Konsta-Gdoutos M S, Metaxa Z S, Shah S P. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cement and Concrete Composites, 2010, 32(2): 110–115

    Article  Google Scholar 

  22. Metaxa Z S, Konsta-Gdoutos M S, Shah S P. Carbon nanotubes reinforced concrete. In: Konstantin S, Taha M E, eds. Nanotechnology of Concerete: the Next Big Thing is Small. ACI Special Publication,2009, 267: 11–20

    Google Scholar 

  23. Day R L, Marsh B K. Measurement of porosity in blended cement pastes. Cement and Concrete Research, 1988, 18(1): 63–73

    Article  Google Scholar 

  24. Vodák F, Trtík K, Kapicková O, Hošková Š, Demo P. The effect of temperature on strength–porosity relationship for concrete. Construction & Building Materials, 2004, 18(7): 529–534

    Article  Google Scholar 

  25. Auskern A, Horn W. Capillary porosity in hardened cement paste. Journal of Testing and Evaluation, 1973, 1(1): 74–79

    Article  Google Scholar 

  26. Pantazopoulou S, Mills R. Microstructural aspects of the mechanical response of plain concrete. ACI Materials Journal, 1995, 92(6): 605–616

    Google Scholar 

  27. ASTM-D4404. Standard Test Method for Determination of Pore Volume and Pore Volume Distribution of Soil and Rock by Mercury Intrusion Porosimetry. ASTM International, West Conshohocken, PA, 2007, 1–7

  28. Winslow D N, Cohen M D, Bentz D P, Snyder K A, Garboczi E J. Percolation and pore structure in mortars and concrete. Cement and Concrete Research, 1994, 24(1): 25–37

    Article  Google Scholar 

  29. Cook D J, Cao H T. An Investigation of the Pore Structure in Fly Ash/OPC Blends, Pore Structure and Construction Properties. Proceedings of the First International Congress, RILEM/AFREM, 1987, 1: 69–76

    Google Scholar 

  30. Ouellet S, Bussière B, Aubertin M, Benzaazoua M. Microstructural evolution of cemented paste backfill: mercury intrusion porosimetry test results. Cement and Concrete Research, 2007, 37(12): 1654–1665

    Article  Google Scholar 

  31. Li G Y, Wang P M, Zhao X. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon, 2005, 43(6): 1239–1245

    Article  Google Scholar 

  32. Holly J, Hampton D, Thomas M D. Modelling relationships between permeability and cement paste pore microstructures. Cement and Concrete Research, 1993, 23(6): 1317–1330

    Article  Google Scholar 

  33. El-Dieb A, Hooton R. Evaluation of the Katz-Thompson model for estimating the water permeability of cement-based materials from mercury intrusion porosimetry data. Cement and Concrete Research, 1994, 24(3): 443–455

    Article  Google Scholar 

  34. Mehta P K, Manmohan D. Pore Size Distribution and Permeability of Hardened Cement Pastes. The 7th International Congress on the Chemistry of Cement, 1980, II: 1–5

    Google Scholar 

  35. Moon H Y, Kim H S, Choi D S. Relationship between average pore diameter and chloride diffusivity in various concretes. Construction & Building Materials, 2006, 20(9): 725–732

    Article  Google Scholar 

  36. Moro F, Böhni H. Ink-bottle effect in mercury intrusion porosimetry of cement-based materials. Journal of Colloid and Interface Science, 2002, 246(1): 135–149

    Article  Google Scholar 

  37. Diamond S. Mercury porosimetry: an inappropriate method for the measurement of pore size distributions in cement-based materials. Cement and Concrete Research, 2000, 30(10): 1517–1525

    Article  Google Scholar 

  38. Gallé C. Effect of drying on cement-based materials pore structure as identified by mercury intrusion porosimetry: a comparative study between oven-, vacuum-, and freeze-drying. Cement and Concrete Research, 2001, 31(10): 1467–1477

    Article  Google Scholar 

  39. Mehta P K, Monteiro P J. Concrete: Microstructure, Properties, and Materials (3rd ed). 2006. McGraw-Hill New York

    Google Scholar 

  40. Ye G. Percolation of capillary pores in hardening cement pastes. Cement and Concrete Research, 2005, 35(1): 167–176

    Article  MathSciNet  Google Scholar 

  41. Cook R A, Hover K C. Mercury porosimetry of hardened cement pastes. Cement and Concrete Research, 1999, 29(6): 933–943

    Article  Google Scholar 

  42. Chen X, Wu S. Influence of water-to-cement ratio and curing period on pore structure of cement mortar. Construction & Building Materials, 2013, 38: 804–812

    Article  Google Scholar 

  43. Ma Y, Hu J, Ye G. The pore structure and permeability of alkali activated fly ash. Fuel, 2013, 104: 771–780

    Article  Google Scholar 

  44. Zeng Q, Li K, Fen-chong T, Dangla P. Pore structure characterization of cement pastes blended with high-volume flyash. Cement and Concrete Research, 2012, 42(1): 194–204

    Article  Google Scholar 

  45. Zhou J, Ye G, van Breugel K. Characterization of pore structure in cement-based materials using pressurization–depressurization cycling mercury intrusion porosimetry (PDC-MIP). Cement and Concrete Research, 2010, 40(7): 1120–1128

    Article  Google Scholar 

  46. Felipe C, Cordero S, Kornhauser I, Zgrablich G, López R, Rojas F. Domain complexion diagrams related to mercury intrusionextrusion in monte carlo-simulated porous networks. Particle & Particle Systems Characterization, 2006, 23(1): 48–60

    Article  Google Scholar 

  47. Porcheron F, Monson P A, Thommes M. Modeling mercury porosimetry using statistical mechanics. Langmuir, 2004, 20(15): 6482–6489

    Article  Google Scholar 

  48. Porcheron F, Thommes M, Ahmad R, Monson P A. Mercury porosimetry in mesoporous glasses: a comparison of experiments with results from a molecular model. Langmuir, 2007, 23(6): 3372–3380

    Article  Google Scholar 

  49. Moura M J, Ferreira P J, Figueiredo M M. Mercury intrusion porosimetry in pulp and paper technology. Powder Technology, 2005, 160(2): 61–66

    Article  Google Scholar 

  50. Bhuiyan I, Mouzon J, Forsmo S P E, Hedlund J. Quantitative image analysis of bubble cavities in iron ore green pellets. Powder Technology, 2011, 214(3): 306–312

    Article  Google Scholar 

  51. Wild S. A discussion of the paper “Mercury porosimetry—an inappropriate method for the measurement of pore size distributions in cement-based materials” by S. Diamond. Cement and Concrete Research, 2001, 31(11): 1653–1654

    Article  Google Scholar 

  52. Gallé C. Reply to the discussion by S. Diamond of the paper “Effect of drying on cement-based materials pore structure as identified by mercury intrusion porosimetry: a comparative study between oven-, vacuum-and freeze-drying”. Cement and Concrete Research, 2003, 33(1): 171–172

    Google Scholar 

  53. Wang Y. Microstructural study of hardened cement paste by backscatter scanning electron microscopy and image analysis. Dissertation for PhD. degree. Purdue University,1995

    Google Scholar 

  54. Liu Z, Winslow D. Sub-distributions of pore size: a new approach to correlate pore structure with permeability. Cement and Concrete Research, 1995, 25(4): 769–778

    Article  Google Scholar 

  55. Diamond S. A critical comparison of mercury porosimetry and capillary condensation pore size distributions of portland cement pastes. Cement and Concrete Research, 1971, 1(5): 531–545

    Article  Google Scholar 

  56. Katz A, Thompson A. Quantitative prediction of permeability in porous rock. Physical Review B: Condensed Matter and Materials Physics, 1986, 34(11): 8179–8181

    Article  Google Scholar 

  57. Chatterji S. A discussion of the paper “Mercury porosimetry—an inappropriate method for the measurement of pore size distributions in cement-based materials” by S. Diamond. Cement and Concrete Research, 2001, 31(11): 1657–1658

    Article  Google Scholar 

  58. Diamond S. Reply to the discussion by S. Chatterji of the paper “Mercury porosimetry—an inappropriate method for the measurement of pore size distributions in cement-based materials”. Cement and Concrete Research, 2001, 31(11): 1659

    Google Scholar 

  59. Wenzel R N. Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 1936, 28(8): 988–994

    Article  Google Scholar 

  60. Marmur A. Soft contact: measurement and interpretation of contact angles. Soft Matter, 2006, 2(1): 12–17

    Article  Google Scholar 

  61. Marmur A. Solid-surface characterization by wetting. Annual Review of Materials Research, 2009, 39(1): 473–489

    Article  MathSciNet  Google Scholar 

  62. Moutinho I, Figueiredo M, Ferreira P. Evaluating the surface energy of laboratory-made paper sheets by contact angle measurements. Tappi Journal, 2007, 6(6): 26–32

    Google Scholar 

  63. Rosales-Leal J, Rodríguez-Valverde M A, Mazzaglia G, Ramón-Torregrosa P J, Díaz-Rodríguez L, García-Martínez O, Vallecillo-Capilla M, Ruiz C, Cabrerizo-Vílchez M A. Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 365(1–3): 222–229

    Article  Google Scholar 

  64. Marmur A. Thermodynamic aspects of contact angle hysteresis. Advances in Colloid and Interface Science, 1994, 50: 121–141

    Article  Google Scholar 

  65. Gao L, McCarthy T J. Contact angle hysteresis explained. Langmuir, 2006, 22(14): 6234–6237

    Article  Google Scholar 

  66. Walls J, Smith R. Surface science techniques. Vacuum, 2013, 45 (6–7): 647

    Google Scholar 

  67. Hearn N, Hooton R D. Sample mass and dimension effects on mercury intrusion porosimetry results. Cement and Concrete Research, 1992, 22(5): 970–980

    Article  Google Scholar 

  68. Poon C S, Lam L, Wong Y L. A study on high strength concrete prepared with large volumes of low calcium fly ash. Cement and Concrete Research, 2000, 30(3): 447–455

    Article  Google Scholar 

  69. Feldman R F, Beaudoin J J. Pretreatment of hardened hydrated cement pastes for mercury intrusion measurements. Cement and Concrete Research, 1991, 21(2–3): 297–308

    Article  Google Scholar 

  70. Korpa A, Trettin R. The influence of different drying methods on cement paste microstructures as reflected by gas adsorption: comparison between freeze-drying (F-drying), D-drying, P-drying and oven-drying methods. Cement and Concrete Research, 2006, 36(4): 634–649

    Article  Google Scholar 

  71. Konecny L, Naqvi S J. The effect of different drying techniques on the pore size distribution of blended cement mortars. Cement and Concrete Research, 1993, 23(5): 1223–1228

    Article  Google Scholar 

  72. Good R J, Mikhail R S. The contact angle in mercury intrusion porosimetry. Powder Technology, 1981, 29(1): 53–62

    Article  Google Scholar 

  73. Feldman R F. Pore structure damage in blended cements caused by mercury intrusion. Journal of the American Ceramic Society, 1984, 67(1): 30–33

    Article  Google Scholar 

  74. Ma H. Mercury intrusion porosimetry in concrete technology: tips in measurement, pore structure parameter acquisition and application. Journal of Porous Materials, 2014, 21(2): 207–215

    Article  Google Scholar 

  75. ISO15901-1. Evaluation of Pore Size Distribution and Porosimetry of Solid Materials by Mercury Porosimetry and Gas Adsorption— Part 1: Mercury Porosimetry (International Organization for Standardization. 2005. Geneva: 6–9

  76. Kaufmann J, Loser R, Leemann A. Analysis of cement-bonded materials by multi-cycle mercury intrusion and nitrogen sorption. Journal of Colloid and Interface Science, 2009, 336(2): 730–737

    Article  Google Scholar 

  77. Kumar R, Bhattacharjee B. Study on some factors affecting the results in the use of MIP method in concrete research. Cement and Concrete Research, 2003, 33(3): 417–424

    Article  Google Scholar 

  78. Ye G, van Breugel K, Fraaij A. Three-dimensional microstructure analysis of numerically simulated cementitious materials. Cement and Concrete Research, 2003, 33(2): 215–222

    Article  Google Scholar 

  79. Winslow D. Some experimental possibilities with mercury intrusion porosimetry. MRS Proceedings. Cambridge Univ Press,1988

    Google Scholar 

  80. Bonard J M, Croci M, Klinke C, Kurt R, Noury O, Weiss N. Carbon nanotube films as electron field emitters. Carbon, 2002, 40(10): 1715–1728

    Article  Google Scholar 

  81. Lau A K T, Hui D. The revolutionary creation of new advanced materials—carbon nanotube composites. Composites Part B: Engineering, 2002, 33(4): 263–277

    Article  Google Scholar 

  82. Fragneaud B, Masenelli-Varlot K, Gonzalez-Montiel A, Terrones M, Cavaillé J Y. Mechanical behavior of polystyrene grafted carbon nanotubes/polystyrene nanocomposites. Composites Science and Technology, 2008, 68(15–16): 3265–3271

    Article  Google Scholar 

  83. Li G Y, Wang P M, Zhao X. Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cement and Concrete Composites, 2007, 29(5): 377–382

    Article  Google Scholar 

  84. Makar J, Margeson J, Luh J. Carbon nanotube/cement compositesearly results and potential applications. Conference on Construction Materials, 2005

    Google Scholar 

  85. Moore E M, Ortiz D L, Marla V T, Shambaugh R L, Grady B P. Enhancing the strength of polypropylene fibers with carbon nanotubes. Journal of Applied Polymer Science, 2004, 93(6): 2926–2933

    Article  Google Scholar 

  86. Zhao Q, Gan Z, Zhuang Q. Electrochemical sensors based on carbon nanotubes. Electroanalysis, 2002, 14(23): 1609–1613

    Article  Google Scholar 

  87. Riggs J E, Guo Z, Carroll D L, Sun Y P. Strong luminescence of solubilized carbon nanotubes. Journal of the American Chemical Society, 2000, 122(24): 5879–5880

    Article  Google Scholar 

  88. Makar J, Beaudoin J. Carbon nanotubes and their application in the construction industry. Special Publication- Royal Society of Chemistry, 2004, 292: 331–341

    Article  Google Scholar 

  89. Yu M F, Lourie O, Dyer M J, Moloni K, Kelly T F, Ruoff R S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 2000, 287(5453): 637–640

    Article  Google Scholar 

  90. Salvetat J P, Bonard J M, Thomson N H, Kulik A J, Forró L, Benoit W, Zuppiroli L. Mechanical properties of carbon nanotubes. Applied Physics A: Materials Science & Processing, 1999, 69(3): 255–260

    Article  Google Scholar 

  91. Walters D, Ericson LM, CasavantMJ, Liu J, Colbert D T, Smith K A, Smalley R E. Elastic strain of freely suspended single-wall carbon nanotube ropes. Applied Physics Letters, 1999, 74(25): 3803–3805

    Article  Google Scholar 

  92. Berber S, Kwon Y K, Tomanek D. Unusually high thermal conductivity of carbon nanotubes. Physical Review Letters, 2000, 84(20): 4613–4616

    Article  Google Scholar 

  93. Louie S G. Electronic properties, junctions, and defects of carbon nanotubes. In: Dresselhaus M S, Dresselhaus G, Avouris P, eds. Carbon Nanotubes. Springer,2001, 113–145

    Chapter  Google Scholar 

  94. Cwirzen A, Habermehl-Cwirzen K, Penttala V. Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites. Advances in Cement Research, 2008, 20(2): 65–73

    Article  Google Scholar 

  95. Makar J M, Chan G W. Growth of cement hydration products on single-walled carbon nanotubes. Journal of the American Ceramic Society, 2009, 92(6): 1303–1310

    Article  Google Scholar 

  96. Barraza H J, Pompeo F, O’Rea E A, Resasco D E. SWNT-filled thermoplastic and elastomeric composites prepared by miniemulsion polymerization. Nano Letters, 2002, 2(8): 797–802

    Article  Google Scholar 

  97. Saez de Ibarra Y, Gaitero J J, Erkizia E, Campillo I. Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions. Physica Status Solidi (a), 2006, 203(6): 1076–1081

    Article  Google Scholar 

  98. Ma R Z, Wu J, Wei B Q, Liang J, Wu D H. Processing and properties of carbon nanotubes–nano-SiC ceramic. Journal of Materials Science, 1998, 33(21): 5243–5246

    Article  Google Scholar 

  99. Wansom S, Kidner N J, Woo L Y, Mason T O. AC-impedance response of multi-walled carbon nanotube/cement composites. Cement and Concrete Composites, 2006, 28(6): 509–519

    Article  Google Scholar 

  100. Fu X, Chung D. Submicron-diameter-carbon-filament cementmatrix composites. Carbon, 1998, 36(4): 459–462

    Article  Google Scholar 

  101. Eitan A, Jiang K, Dukes D, Andrews R, Schadler L S. Surface modification of multiwalled carbon nanotubes: toward the tailoring of the interface in polymer composites. Chemistry of Materials, 2003, 15(16): 3198–3201

    Article  Google Scholar 

  102. Cwirzen A, Habermehl-Cwirzen K, Nasibulin A G, Kaupinen E I, Mudimela P R, Penttala V. SEM/AFM studies of cementitious binder modified by MWCNT and nano-sized Fe needles. Materials Characterization, 2009, 60(7): 735–740

    Article  Google Scholar 

  103. Musso S, Tulliani J M, Ferro G, Tagliaferro A. Influence of carbon nanotubes structure on the mechanical behavior of cement composites. Composites Science and Technology, 2009, 69 (11–12): 1985–1990

    Article  Google Scholar 

  104. Konsta-Gdoutos M S, Metaxa Z S, Shah S P. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cement and Concrete Composites, 2010, 32(2): 110–115

    Article  Google Scholar 

  105. Sanchez F, Ince C. Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites. Composites Science and Technology, 2009, 69(7–8): 1310–1318

    Article  Google Scholar 

  106. Musso S, Porro S, Vinante M, Vanzetti L, Ploeger R, Giorcelli M, Possetti B, Trotta F, Pederzolli C, Tagliaferro A. Modification of MWNTs obtained by thermal-CVD. Diamond and Related Materials, 2007, 16(4): 1183–1187

    Article  Google Scholar 

  107. Chaipanich A, Nochaiya T, Wongkeo W, Torkittikul P. Compressive strength and microstructure of carbon nanotubes–fly ash cement composites. Materials Science and Engineering A, 2010, 527(4): 1063–1067

    Article  Google Scholar 

  108. Nochaiya T, Tolkidtikul P, Singjai P, Chaipanich A. Microstructure and characterizations of Portland-carbon nanotubes pastes. Advanced Materials Research, 2008, 55: 549–552

    Article  Google Scholar 

  109. Pandey S, Sharma R. The influence of mineral additives on the strength and porosity of OPC mortar. Cement and Concrete Research, 2000, 30(1): 19–23

    Article  Google Scholar 

  110. Abell A, Willis K, Lange D. Mercury intrusion porosimetry and image analysis of cement-based materials. Journal of Colloid and Interface Science, 1999, 211(1): 39–44

    Article  Google Scholar 

  111. Pipilikaki P, Beazi-Katsioti M. The assessment of porosity and pore size distribution of limestone Portland cement pastes. Construction & Building Materials, 2009, 23(5): 1966–1970

    Article  Google Scholar 

  112. Atahan H N, Oktar O N, Tasdemir M A. Effects of water–cement ratio and curing time on the critical pore width of hardened cement paste. Construction & Building Materials, 2009, 23(3): 1196–1200

    Article  Google Scholar 

  113. Lu Z, Hou D, Meng L, Sun G, Lu C, Li Z. Mechanism of cement paste reinforced by graphene oxide/carbon nanotubes composites with enhanced mechanical properties. RSC Advances, 2015, 5(122): 100598–100605

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Ghahari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghahari, S.A., Ghafari, E. & Assi, L. Pore structure of cementitious material enhanced by graphitic nanomaterial: a critical review. Front. Struct. Civ. Eng. 12, 137–147 (2018). https://doi.org/10.1007/s11709-017-0431-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-017-0431-9

Keywords

Navigation