Skip to main content
Log in

Effects of seeding nucleation agent on geopolymerization process of fly-ash geopolymer

  • Research Article
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

Geopolymer, an inorganic aluminosilicate material activated by alkaline medium solution, can perform as an inorganic adhesive. The geopolymer technology has a viability to substitute traditional concrete made of portland cement (PC) because replacing PC with fly ash leads to reduced carbon dioxide emissions from cement productions and reduced materials cost. Although fly ash geopolymer stimulates sustainability, it is slow geopolymerization reaction poses a challenge for construction technology in term of practicality. The development of increasing geopolymerization reaction rate of the geopolymer is needed.

The purpose of this study is to evaluate seeding nucleation agents (NA) of fly ash geopolymer that can accelerate polymerization reactions such that the geopolymer can be widely used in the construction industry. Results from the present study indicate that the use of NA (i.e., Ca(OH)2) can be potentially used to increase geopolymerization reaction rate and improve performance characteristics of the fly ash geopolymer product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Horvath A. Construction materials and the environment. Environment and Resources, 2004, 29: 181–204

    Article  Google Scholar 

  2. Vassilev S V, Menendez R, Alvarez D, Diaz-Somoano M, Martinez-Tarazona M R. Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. 1. Characterization of feed coals and fly ashes. Fuel, 2003, 82(14): 1793–1811

    Article  Google Scholar 

  3. Williams R P, van Riessen A. Determination of the reactive component of fly ashes for geopolymer production using XRF and XRD. Fuel, 2010, 89(12): 3683–3692

    Article  Google Scholar 

  4. Ahmaruzzaman M, Gupta V K. Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Industrial & Engineering Chemistry Research, 2011, 50(24): 13589–13613

    Article  Google Scholar 

  5. Erol M, Küçükbayrak S, Ersoy-Meriçboyu A. Characterization of coal fly ash for possible utilization in glass production. Fuel, 2007, 86(5–6): 706–714

    Article  Google Scholar 

  6. Haynes R J. Reclamation and revegetation of fly ash disposal sites–Challenges and research needs. Journal of Environmental Management, 2009, 90(1): 43–53

    Article  Google Scholar 

  7. Fernández-Jimenez A, de la Torre A G, Palomo A, López-Olmo G, Alonso M M, Aranda M A G. Quantitative determination of phases in the alkali activation of fly ash. Part I. Potential ash reactivity. Fuel, 2006, 85(5–6): 625–634

    Article  Google Scholar 

  8. Dermatas D, Meng X. Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils. Engineering Geology, 2003, 70(3–4): 377–394

    Article  Google Scholar 

  9. Somna K, Jaturapitakkul C, Kajitvichyanukul P, Chindaprasirt P. NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel, 2011, 90(6): 2118–2124

    Article  Google Scholar 

  10. Davidovits J. Geopolymer Chemistry and Applications. 2nd ed. Institue Geopolymere, Saint-Quentin, France, 2008

    Google Scholar 

  11. Panias D, Giannopoulou I P, Perraki T. Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers. Colloids and Surfaces. A. Physicochemical and Engineering Aspects, 2007, 301(1–3): 246–254

    Article  Google Scholar 

  12. Gartner E. Industrially interesting approaches to “low-CO2” cements. Cement and Concrete Research, 2004, 34(9): 1489–1498

    Article  Google Scholar 

  13. Juenger M C G, Winnefeld F, Provis J L, Ideker J H. Advances in Alternative Cementitious Binders, 2010

    Google Scholar 

  14. Li Q, Xu H, Li F, Li P, Shen L, Zhai J. Synthesis of geopolymer composites from blends of CFBC fly and bottom ashes. Fuel, 2012, 97: 366–372

    Article  Google Scholar 

  15. McLellan B C, Williams R P, Lay J, van Riessen A, Corder G D. Cost and carbon emissions for geopolymer pastes in comparison to ordianry portland cement. Journal of Cleaner Production, 2011, 19 (9–10): 1080–1090

    Article  Google Scholar 

  16. Schmücker M, MacKenzie K J D. Microstructure of sodium polysialate siloxo geopolymer. Ceramics International, 2005, 31(3): 433–437

    Article  Google Scholar 

  17. Ismael M R, dos Anjos R D, Salomao R, Pandolfelli V C. Colloidal silica as a nanostructured binder for refractory castables. Refractories App, 2006, 11: 16–20

    Google Scholar 

  18. Phair J W, van Deventer J S J. Characterization of fly-ash-based geopolymeric binders activated with sodium aluminate. Industrial & Engineering Chemistry Research, 2002, 41(17): 4242–4251

    Article  Google Scholar 

  19. Kong D L Y, Sanjayan J G, Sagoe-Crentsil K. Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cement and Concrete Research, 2007, 37(12): 1583–1589

    Article  Google Scholar 

  20. Chindaprasirt P, Chareerat T, Sirivivatnanon V. Workability and strength of coarse high calcium fly ash geopolymer. Cement and Concrete Composites, 2007, 29(3): 224–229

    Article  Google Scholar 

  21. Sumajouw D M, Hardjito D, Wallah S E, Rangan B V. Fly ash-based geopolymer concrete: Study of slender reinforced columns. Journal of Materials Science, 2007, 42(9): 3124–3130

    Article  Google Scholar 

  22. Lee WK W, van Deventer J S J. The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements. Cement and Concrete Research, 2002, 32(4): 577–584

    Article  Google Scholar 

  23. Duxson P, Lukey G C, van Deventer J S J. Thermal conductivity of metakaolin geopolymers used as a first approximation for determining gel interconnectivity. Industrial & Engineering Chemistry Research, 2006, 45(23): 7781–7788

    Article  Google Scholar 

  24. Hardjito D, Rangan B V. Development and Properties of Low-Calcium Fly Ash-Based Geopolymer Concrete. Curtin University of Technology, Perth, Australia, 2005

    Google Scholar 

  25. Palomo A, Blanco-Varela M T, Granizo M L, Puertas F, Vazquez T, Grutzeck M W. Chemical stability of cementitious materials based on metakaolin. Cement and Concrete Research, 1999, 29(7): 997–1004

    Article  Google Scholar 

  26. Fernandez-Jimenez A, Garcia-Lodeiro I, Palomo A. Durability of alkali-activated fly ash cementitious materials. Journal of Materials Science, 2007, 742(9): 3055–3065

    Article  Google Scholar 

  27. Puertas F, Martinez-Ramirez S, Alonso S, Vazquez T. Alkaliactivated fly ash/slag cement: Strength behaviour and hydration products. Cement and Concrete Research, 2000, 30: 1625–1632

    Article  Google Scholar 

  28. Haddad R H, Alshbuol O. Production of geopolymer concrete using natural pozzolan: A parametric study. Construction & Building Materials, 2016, 114: 699–707

    Article  Google Scholar 

  29. Albitar M, Mohamed Ali M S, Visintin P, Drechsler M. Effect of granulated lead smelter slag on strength of fly ash-based geopolymer concrete. Construction & Building Materials, 2015, 83: 128–135

    Article  Google Scholar 

  30. Adam A A, Horianto X X X. The effect of temperature and duration of curing on the strength of fly ash based geopolymer mortar. Procedia Engineering, 2014, 95: 410–414

    Article  Google Scholar 

  31. Arioz E, Arioz O, Mete Kockar O. An experimental study on the mechanical and microstrutural properties of geopolymers. Procedia Engineering, 2012, 42: 100–105

    Article  Google Scholar 

  32. Albitar M, Visintin P, Ali M M, Drechsler M. Assessing behaviour of fresh and hardened geopolymer concrete mixed with class-F fly ash. KSCE Journal of Civil Engineering, 2015, 19(5): 1445–1455

    Article  Google Scholar 

  33. Oh J E, Monteiro P J M, Jun S S, Choi S, Clark M. The evolution of strength and crystalline phases for alkali-activated groud blast furnance slag and fly ash-based geopolymers. Cement and Concrete Research, 2010, 40(2): 189–196

    Article  Google Scholar 

  34. Nazari A, Sanjayan J. Handbook of Low Carbon Concrete. Butterworth-Heinemann, 2016

    Google Scholar 

  35. Young J R, How M J, Walker A P, Worth W M H. Classification as corrosive or irritant to skin of preparations containing acidic or alkaline substances without testing on animals. Toxicology in Vitro, 1988, 2(1): 19–26

    Article  Google Scholar 

  36. Currell B R, Grzeskowilak R, Midgley H G, Parsonage J R. The acceleration and retardation of set high alumina cement by additives. Cement and Concrete Research, 1987, 17(3): 420–432

    Article  Google Scholar 

  37. Damidot D, Rettel A, Capmas A. Action of admixtures on fondu cement: Part I lithium and sodium salts compared. Advances in Cement Research, 1996, 8(31): 111–119

    Article  Google Scholar 

  38. Novinson T, Crahan J. Lithium salts as set accelerators for refractory concretes: Correlation of chemical properties with setting times. ACI Materials Journal, 1988, 85: 12–16

    Google Scholar 

  39. Luong T, Mayer H, Eckert H, Novinson T I. In situ 27Al NMR studies of cement hydration: The effect of lithium-containing setting accelerations. Journal of the American Ceramic Society, 1989, 72 (11): 2136–2141

    Article  Google Scholar 

  40. Matusinovic T, Curlin D. Lithium salts as set accelerators for high alumina cement. Cement and Concrete Research, 1993, 23(4): 885–895

    Article  Google Scholar 

  41. Wang H, Eubanks K, Fitch B, Manissero C, Marin F. Effective use of lithium-based admixtures for set control of cementitious system. ACI-Special Pub, 1997, 173: 893–908

    Google Scholar 

  42. Millard M J, Kurtis K E. Effects of lithium nitrate admixture on early-age cement hydration. Cement and Concrete Research, 2008, 38(4): 500–510

    Article  Google Scholar 

  43. O’Connor S J, MacKenzie K J D. Synthesis, characterisation and thermal behaviour of lithium aluminosilicate inorganic polymers. Journal of Materials Science, 2010, 45(14): 3707–3713

    Article  Google Scholar 

  44. Jang H M, Kim K S, Jung C J. Chemical processing and densification characteristics of lithium aluminosilicate (LAS) gels. Journal of Materials Research, 1992, 7(08): 2273–2280

    Article  Google Scholar 

  45. Rodger S A, Double D D. The chemistry of hydration of high alumina cement in the presence of accelerating and retarding admixtures. Cement and Concrete Research, 1984, 14(1): 73–82

    Article  Google Scholar 

  46. Dove P M, Nix C J. The influence of the alkaline earth cations, magnesium, calcium, and barium on the dissolution kinetics of quartz. Geochemi. Cosmoch. Acta, 1997, 61(16): 3329–3340

    Article  Google Scholar 

  47. Dove P M, Elston S F. Dissolution kinetics of quartz in sodium chloride solutions: Analysis of existing data and a rate model for 25° C. Geochemi Cosmoch Acta, 1992, 56(12): 4147–4156

    Article  Google Scholar 

  48. Barker P, Fontes J C, Gasse F, Druart J C. Experimental dissolution of diatom silica in concentrated salt solutions and implications for paleoenviromental reconstruction. Limnology and Oceanography, 1994, 39(1): 99–110

    Article  Google Scholar 

  49. Kamiya H, Shimokata K. The role of salts in the dissolution of powdered quartz. In: Cadek J, Paces T. eds. In: Proceedings of the International Symposium on Water-rock Interaction. Czechoslovakian Geol, Survey, Prague, 1976

    Google Scholar 

  50. House W A. The role of surface complexation in the dissolution kinetics of silica: Effects of monovalent and divalent ions at 25°C. Journal of Colloid & Interface Science, 1994, 163(2): 379–390

    Article  Google Scholar 

  51. Rattanasak U, Pankhet K, Chindaprasirt P. Effect of chemical admixtures on properties of high-calcium fly ash geopolymer. International Journal of Minerals Metallurgy and Materials, 2011, 18(3): 364–369

    Article  Google Scholar 

  52. Temuujin J, van Riessen A, Williams R. Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. Journal of Hazardous Materials, 2009, 167(1-3): 82–88

    Article  Google Scholar 

  53. van Deventer J S J, Provis J L, Duxson P, Lukey G C. Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. Journal of Hazardous Materials, 2007, 139(3): 506–513

    Article  Google Scholar 

  54. Davidotvits J. Geopolymers: Inorganic polymeric new materials. J Mater Eng, 1994, 16: 91–139

    Google Scholar 

  55. Lin S T, Huang R. Application of Ultrasonic Method for Determining Set Times of VMA Modified Cementitious Composites. In: Buyukozturk O, Tademir MA, eds. Nondestructive Testing of Materials and Structures, RILEM Bookseries, Istanbul, Turkey, 2012, 473–477

    Google Scholar 

  56. Nmai C K. Cementitious materials for concrete. ACI Educat. Bulltin E 3–01. ACI, 2001, 25

    Google Scholar 

  57. Trejo D, Prasittisopin L. Effects of mixing variables on early-age characteristics of portland cement systems. Journal of Materials in Civil Engineering, 2016, 28(10): 04016094

    Article  Google Scholar 

  58. EN 1992–1-1 (2004): Eurocode 2: Design of concrete structures–Part 1–1: General rules and rules for buildings, Authority: The European Union Per Regulation 305/2011. Directive 98/34/EC, Directive 2004/18/EC

  59. Standard for fresh concrete–The application of BS EN 206–1 and BS 8500, British Standard Institution, 2004

  60. Details and Detailing of Concrete Reinforcement. (ACI 315–99), American Concrete Institute, 1999

Download references

Acknowledgements

The authors wish to thank the school of Civil and Construction Engineering at Oregon State University for some of the laboratory equipment in this study, Dr. Thomas Shellhammer, Department of Food Science & Technology, Oregon State University for advising the use of the particle size analyzer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issara Sereewatthanawut.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasittisopin, L., Sereewatthanawut, I. Effects of seeding nucleation agent on geopolymerization process of fly-ash geopolymer. Front. Struct. Civ. Eng. 12, 16–25 (2018). https://doi.org/10.1007/s11709-016-0373-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-016-0373-7

Keywords

Navigation