Advertisement

Frontiers of Structural and Civil Engineering

, Volume 11, Issue 1, pp 111–122 | Cite as

Predication of discharge coefficient of cylindrical weir-gate using adaptive neuro fuzzy inference systems (ANFIS)

  • Abbas Parsaie
  • Amir Hamzeh Haghiabi
  • Mojtaba Saneie
  • Hasan Torabi
Research Article

Abstract

Settlement of sediments behind weirs and accumulation of materials floating on water behind gates decreases the performance of these structures. Weir-gate is a combination of weir and gate structures which solves them Infirmities. Proposing a circular shape for crest of weirs to improve their performance, investigators have proposed cylindrical shape to improve the performance of weir-gate structure and call it cylindrical weir-gate. In this research, discharge coefficient of weir-gate was predicated using adaptive neuro fuzzy inference systems (ANFIS). To compare the performance of ANFIS with other types of soft computing techniques, multilayer perceptron neural network (MLP) was prepared as well. Results of MLP and ANFIS showed that both models have high ability for modeling and predicting discharge coefficient; however, ANFIS is a bit more accurate. The sensitivity analysis of MLP and ANFIS showed that Froude number of flow at upstream of weir and ratio of gate opening height to the diameter of weir are the most effective parameters on discharge coefficient.

Keywords

weir-gate soft computing crest geometry circular crest weir cylindrical shape 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dehdar-behbahani S, Parsaie A. Numerical modeling of flow pattern in dam spillway’s guide wall. Case study: Balaroud dam, Iran. Alexandria Engineering Journal, 2016, 55(1): 467–473CrossRefGoogle Scholar
  2. 2.
    Parsaie A, Haghiabi A H, Moradinejad A. CFD modeling of flow pattern in spillway’s approach channel. Sustainable Water Resources Management, 2015, 1(3): 245–251CrossRefGoogle Scholar
  3. 3.
    Budarapu P R, Gracie R, Yang S W, Zhuang X, Rabczuk T. Efficient coarse graining in multiscale modeling of fracture. Theoretical and Applied Fracture Mechanics, 2014, 69: 126–143CrossRefGoogle Scholar
  4. 4.
    Budarapu P R, Yb S S, Javvaji B, Mahapatra D R. Vibration analysis of multi-walled carbon nanotubes embedded in elastic medium. Frontiers of Structural and Civil Engineering, 2014, 8(2): 151–159CrossRefGoogle Scholar
  5. 5.
    Budarapu P R, Javvaji B, Sutrakar V K, Roy Mahapatra D, Zi G, Rabczuk T. Crack propagation in graphene. Journal of Applied Physics, 2015, 118(6): 064307CrossRefGoogle Scholar
  6. 6.
    Budarapu P R, Narayana T S S, Rammohan B, Rabczuk T. Directionality of sound radiation from rectangular panels. Applied Acoustics, 2015, 89: 128–140CrossRefGoogle Scholar
  7. 7.
    Parsaie A, Haghiabi A. The effect of predicting discharge coefficient by neural network on increasing the numerical modeling accuracy of flow over side weir. Water Resources Management, 2015, 29(4): 973–985CrossRefGoogle Scholar
  8. 8.
    Parsaie A, Haghiabi A H. Computational modeling of pollution transmission in rivers. Applied Water Science, 2015, 89: 1–10Google Scholar
  9. 9.
    Parsaie A, Haghiabi A H. Predicting the longitudinal dispersion coefficient by radial basis function neural network. Modeling Earth Systems and Environment, 2015, 1(4): 1–8CrossRefGoogle Scholar
  10. 10.
    Sudhir Sastry Y B, Budarapu P R, Krishna Y, Devaraj S. Studies on ballistic impact of the composite panels. Theoretical and Applied Fracture Mechanics, 2014, 72: 2–12CrossRefGoogle Scholar
  11. 11.
    SudhirSastry Y B, Budarapu P R, Madhavi N, Krishna Y. Buckling analysis of thin wall stiffened composite panels.” Computational Materials Science, 2015, 96(B): 459–471CrossRefGoogle Scholar
  12. 12.
    Talebi H, Silani M, Bordas S P A, Kerfriden P, Rabczuk T. A computational library for multiscale modeling of material failure. Computational Mechanics, 2013, 53(5): 1047–1071MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Talebi H, Silani M, Bordas S P A, Kerfriden P, Rabczuk T. Molecular dynamics/XFEM coupling by a three-dimensional extended bridging domain with applications to dynamic brittle fractures. 2013, 11(6): 527–541Google Scholar
  14. 14.
    Yang S W, Budarapu, P R, Mahapatra, D R, Bordas S P A, Zi G, Rabczuk T. A meshless adaptive multiscale method for fracture. Computational Materials Science, 2015, (B): 382–395CrossRefGoogle Scholar
  15. 15.
    Amiri F, Millán D, Shen Y, Rabczuk T, Arroyo M. Phase-field modeling of fracture in linear thin shells. Theoretical and Applied Fracture Mechanics, 2014, 69: 102–109CrossRefGoogle Scholar
  16. 16.
    Azamathulla H M, Haghiabi A H, Parsaie A. Prediction of side weir discharge coefficient by support vector machine technique. Water Science and Technology: Water Supply, 2016Google Scholar
  17. 17.
    Nguyen-Thanh N, Kiendl J, Nguyen-Xuan H, Wüchner R, Bletzinger K U, Bazilevs Y, Rabczuk T. Rotation free isogeometric thin shell analysis using PHT-splines. Computer Methods in Applied Mechanics and Engineering, 2011, 200(47–48): 3410–3424MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Parsaie A. Analyzing the distribution of momentum and energy coefficients in compound open channel. Modeling Earth Systems and Environment, 2016, 2(1): 1–5CrossRefGoogle Scholar
  19. 19.
    Rabczuk T, Areias P M A, Belytschko T. A meshfree thin shell method for non-linear dynamic fracture. International Journal for Numerical Methods in Engineering, 2007, 72(5): 524–548MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Israelsen O W, Hansen V E. Irrigation Principles and Practices, Wiley, 1962Google Scholar
  21. 21.
    Negm A, El-Saiad A, Alhamid A, Husain D. Characteristics of simultaneous flow over weir and below inverted V-Notches Civil Engineering Research Magazine (CERM). Civil Engineering Department, Faculty of Engineering, Al-Azhar University, Cairo, Egypt, 1994, 16(9): 786–799Google Scholar
  22. 22.
    Negm A, El-Saiad A, Saleh O. Characteristics of combined flow over weirs and below submerged gates. In: Proceedings of the Al-Mansoura Eng. 2nd Int. Conf. (MEIC’97). 1997, 1–3Google Scholar
  23. 23.
    Ferro V. Simultaneous flow over and under a gate. Journal of Irrigation and Drainage Engineering, 2000, 126(3): 190–193CrossRefGoogle Scholar
  24. 24.
    Negm A A M, Al-Brahim A M, Alhamid A A. Combined-free flow over weirs and below gates. Journal of Hydraulic Research, 2002, 40(3): 359–365CrossRefGoogle Scholar
  25. 25.
    Bagheri S, Heidarpour M. Overflow characteristics of circularcrested weirs. Journal of Hydraulic Research, 2010, 48(4): 515–520CrossRefGoogle Scholar
  26. 26.
    Chanson H, Montes J S. Overflow characteristics of circular weirs: effects of inflow conditions. Journal of Irrigation and Drainage Engineering, 1998, 124(3): 152–162CrossRefGoogle Scholar
  27. 27.
    Schmocker L, Halldórsdóttir B R, Hager W H. Effect of weir face angles on circular-crested weir flow. Journal of Hydraulic Engineering, 2011, 137(6): 637–643CrossRefGoogle Scholar
  28. 28.
    Haghiabi A H. Hydraulic characteristics of circular crested weir based on Dressler theory. Biosystems Engineering, 2012, 112(4): 328–334CrossRefGoogle Scholar
  29. 29.
    Kabiri-Samani A, Bagheri S. Discharge coefficient of circularcrested weirs based on a combination of flow around a cylinder and circulation. Journal of Irrigation and Drainage Engineering, 2014, 140(5): 04014010CrossRefGoogle Scholar
  30. 30.
    Mohammadzadeh-Habili J, Heidarpour M, Afzalimehr H. Hydraulic characteristics of a new weir entitled of quarter-circular crested weir. Flow Measurement and Instrumentation, 2013, 33(0): 168–178CrossRefGoogle Scholar
  31. 31.
    Severi A, Masoudian M, Kordi E, Roettcher K. Discharge coefficient of combined-free over-under flow on a cylindrical weir-gate. ISH Journal of Hydraulic Engineering, 2015, 21(1): 42–52CrossRefGoogle Scholar
  32. 32.
    Azamathulla H, Ghani A. Genetic programming for predicting longitudinal dispersion coefficients in streams. Water Resources Management, 2011, 25(6): 1537–1544CrossRefGoogle Scholar
  33. 33.
    Cai Y, Zhu H, Zhuang X. A continuous/discontinuous deformation analysis (CDDA) method based on deformable blocks for fracture modeling. Frontiers of Structural and Civil Engineering, 2013, 7(4): 369–378CrossRefGoogle Scholar
  34. 34.
    Najafzadeh M, Azamathulla H M. Neuro-fuzzy GMDH to predict the scour pile groups due to waves. Journal of Computing in Civil Engineering, 2015, 29(5): 04014068CrossRefGoogle Scholar
  35. 35.
    Najafzadeh M, Etemad-Shahidi A, Lim S Y. Scour prediction in long contractions using ANFIS and SVM. Ocean Engineering, 2016, 111: 128–135CrossRefGoogle Scholar
  36. 36.
    Najafzadeh M, Sattar A A. Neuro-fuzzy GMDH approach to predict longitudinal dispersion in water networks. Water Resources Management, 2015, 29(7): 2205–2219CrossRefGoogle Scholar
  37. 37.
    Najafzadeh M, Tafarojnoruz A. Evaluation of neuro-fuzzy GMDHbased particle swarm optimization to predict longitudinal dispersion coefficient in rivers. Environmental Earth Sciences, 2016, 75(2): 1–12CrossRefGoogle Scholar
  38. 38.
    Parsaie A, Haghiabi A. Predicting the side weir discharge coefficient using the optimized neural network by genetic algorithm. Scientific Journal of Pure and Applied Sciences, 2014, 3(3): 103–112Google Scholar
  39. 39.
    Parsaie A, Yonesi H A, Najafian S. Predictive modeling of discharge in compound open channel by support vector machine technique. Modeling Earth Systems and Environment, 2015, 1(1–2): 1–6Google Scholar
  40. 40.
    Zhuang X, Augarde C E, Mathisen K M. Fracture modeling using meshless methods and level sets in 3D: Framework and modeling. International Journal for Numerical Methods in Engineering, 2012, 92(11): 969–998MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Zhuang X Y, Huang R Q, Zhu H H, Askes H, Mathisen K. A new and simple locking-free triangular thick plate element using independent shear degrees of freedom. Finite Elements in Analysis and Design, 2013, 75: 1–7CrossRefzbMATHGoogle Scholar
  42. 42.
    Juma I A, Hussein H H, Al-Sarraj M F. Analysis of hydraulic characteristics for hollow semi-circular weirs using artificial neural networks. Flow Measurement and Instrumentation, 2014, 38: 49–53CrossRefGoogle Scholar
  43. 43.
    Vu-Bac N, Lahmer T, Keitel H, Zhao J, Zhuang X, Rabczuk T. Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations. Mechanics of Materials, 2014, 68: 70–84CrossRefGoogle Scholar
  44. 44.
    Vu-Bac N, Lahmer T, Zhang Y, Zhuang X, Rabczuk T. Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs). Composites. Part B, Engineering, 2014, 59: 80–95CrossRefGoogle Scholar
  45. 45.
    Vu-Bac N, Rafiee R, Zhuang X, Lahmer T, Rabczuk T. Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters. Composites. Part B, Engineering, 2015, 68: 446–464CrossRefGoogle Scholar
  46. 46.
    Vu-Bac N, Silani M, Lahmer T, Zhuang X, Rabczuk T. A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites. Computational Materials Science, 2015, 96(B): 520–535CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Abbas Parsaie
    • 1
  • Amir Hamzeh Haghiabi
    • 1
  • Mojtaba Saneie
    • 2
  • Hasan Torabi
    • 1
  1. 1.Department of Water EngineeringLorestan UniversityKhorramabadIran
  2. 2.Soil Conservation and Watershed Management Research InstituteTehranIran

Personalised recommendations