Skip to main content
Log in

Modern developments related to nanotechnology and nanoengineering of concrete

  • Review Article
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

This paper reports on modern developments related to nanotechnology of cement and concrete. Recent advances in instrumentation and design of advanced nano-composite materials is discussed. New technological directions and historical milestones in nanoengineering and nanomodification of cement-based materials are presented. It is concluded that there is a strong potential of nanotechnology to improve the performance of cement-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhushan B. Handbook of Nanotechnology. Berlin: Springer, 2004

    Book  Google Scholar 

  2. Poole C P, Owens F J. Introduction to Nanotechnology. New York: John Wiley & Sons, 2003

    Google Scholar 

  3. Gann D. A Review of Nanotechnology and its Potential Applications for Construction. Sussex: SPRU, 2002

    Google Scholar 

  4. Klabunde K J. Nanoscale Materials in Chemistry. New York: Wiley, 2004, 304

    Google Scholar 

  5. Sobolev K, Sanchez F, Raki L, Betts J, Kovler K, Sonebi M, Ferrara L, McDonald D B, Taylor P C, Livingston R A, Shah S P, Basheer M P A, Kurtis K E, Wang K. Bibliography on Application of Nanotechnology and Nanomaterials in Concrete. Skokie: Portland Cement Association, 2008

    Google Scholar 

  6. Calderón-Moreno J M, Schehl M, Popa M. Superplastic behavior of zirconia-reinforced alumina nanocomposites from powder alcoxide mixtures. Acta Materialia, 2002, 50(16): 3973–3983

    Article  Google Scholar 

  7. Sobolev K, Ferrada-Gutiérrez M. How Nanotechnology Can Change the Concrete World: Part 1. American Ceramic Society Bulletin, 2005, 10: 14–17

    Google Scholar 

  8. Dalton A B, Collins S, Muñoz E, Razal JM, Ebron V H, Ferraris J P, Coleman J N, Kim B G, Baughman R H. Super-tough carbonnanotube fibres. Nature, 2003, 423(6941): 703

    Article  Google Scholar 

  9. Nanotechnology of Concrete: Recent Developments and Future Perspectives. Sobolev K, Shah S P, eds. Michigan: American Concrete Institute, 2008

  10. Sanchez F, Sobolev K. Nanotechnology in concrete—A review. Construction & Building Materials, 2010, 24(11): 2060–2071

    Article  Google Scholar 

  11. Sobolev K, Sanchez F. Nanoengineered Concrete. In: Encyclopedia of Nanotechnology. Bhushan B, ed. Berlin: Springer, 2015

    Google Scholar 

  12. Plassard C, Lesniewska E, Pochard I, Nonat A A. Investigation of the surface structure and elastic properties of calcium silicate hydrates at the nanoscaled. Ultramicroscopy, 2004, 100(3-4): 331–338

    Article  Google Scholar 

  13. Watanabe T, Kojima E. US Patent, 6 294 247, 2001

    Google Scholar 

  14. Hosseini T, Flores-Vivian I, Sobolev K, Kouklin N. Concrete embedded dye-synthesized photovoltaic solar cell. Nature Scientific Reports, 2013, 3: 2727

    Google Scholar 

  15. Sobolev K, Flores I, Hermosillo R, Torres-Martínez L M. Application of nanomaterials in high-performance cement composites. In: The Proceedings of ACI Session on Nanotechnology of Concrete: Recent Developments and Future Perspectives. Sobolev K, Shah S P, eds. Michigan: American Concrete Institute, 2008, 93–120

    Google Scholar 

  16. Flores-Vivian I, Pradoto R G K, Moini M, Kozhukhova M, Potapov V, Sobolev K. The Effect of SiO2 Nanoparticles Derived from Hydrothermal Solutions on the Performance of Portland cement Based Materials. Materials & Design, 2016

    Google Scholar 

  17. Thomas J J, Jennings HM, Chen J J. Influence of nucleation seeding on the hydration mechanisms of tricalcium silicate and cement. Journal of Physical Chemistry C, 2009, 113(11): 4327–4334

    Article  Google Scholar 

  18. Collepardi M, Ogoumah-Olagot J J, Skarp U, Troli R. Influence of Amorphous Colloidal Silica on the Properties of Self-Compacting Concretes Proceedings of the International Conference. In: Proceedings of the International Conference in Concrete Constructions. Dundee: University of Dundee, 2002, 473–483

    Google Scholar 

  19. Green B H. Development of a High-Density Cementitious Rock-Matching Grout Using Nano-Particles. In: Sobolev K, Shah S P, eds. The Proceedings of ACI Session on Nanotechnology of Concrete: Recent Developments and Future Perspectives. Denver: American Concrete institute, 2008, 121–131

    Google Scholar 

  20. Björnström J, Martinelli A, Matic A, Borjesson L, Panas I. Accelerating effects of colloidal nano-silica for beneficial calciumsilicate-hydrate formation in cement. Chemical Physics Letters, 2004, 392(1-3): 242–248

    Article  Google Scholar 

  21. Li G. Properties of high-volume fly ash concrete incorporating nano-SiO2. Cement and Concrete Research, 2004, 34(6): 1043–1049

    Article  Google Scholar 

  22. Qing Y, Zenan Z, Deyu K, Rongshen C. Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Construction & Building Materials, 2007, 21(3): 539–545

    Article  Google Scholar 

  23. Porro A, Dolado J S, Campillo I, Erkizia E, de Miguel Y, Sáez de Ibarra Y, Ayuela A. Effects of nanosilica additions on cement pastes. In: Applications of nanotechnology in concrete design; London: Thomas Telford, 2005

    Google Scholar 

  24. Flores I, Sobolev K, Torres L M, Valdez P L, Zarazua E, Cuellar E L. Performance of Cement Systems with Nano-SiO2 Particles Produced Using Sol-gel Method. In: Proceedings of the TRB 1st International Conference on Nanotechnology in Cement and Concrete, Irvine, California, USA, May 5–7, 2010

    Google Scholar 

  25. Sobolev K. High performance cement: A solution for next millennium. Materials Technology, 1999, 14(4): 191–193

    Article  Google Scholar 

  26. Sanchez F, Zhang L, Ince C. Multi-scale performance and durability of carbon nanofiber/cement composites. In: Bittnar Z, Bartos P J M, Nemecek J, Smilauer V, Zeman J, eds. Nanotechnology in Construction: Proceedings of the NICOM-3, Prague, Czech Republic, 2009, 345–350

    Chapter  Google Scholar 

  27. Shah S P, Konsta-Gdoutos M S, Metaxa Z S, Mondal P. Nanoscale modification of cementitious materials. In: Bittnar Z, Bartos P J M, Nemecek J, Smilauer V, Zeman J, eds. Nanotechnology in Construction: Proceedings of the NICOM-3, Prague, Czech Republic, 2009, 125–130

    Chapter  Google Scholar 

  28. Makar J M, Margeson J, Luh J. Carbon nanotube/cement composites—early results and potential applications. In: Proceedings of 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications. Vancouver, August 22–24, 2005; 1–10.

    Google Scholar 

  29. Sbia L A, Peyvandi A, Soroushian P, Balachandra A M, Sobolev K. Evaluation of modified-graphite nanomaterials in concrete nanocomposite based on packing density principles. Construction & Building Materials, 2015, 76: 413–422

    Article  Google Scholar 

  30. Petrunin S, Vaganov V, Sobolev K. Cement Composites Reinforced with Functionalized Carbon Nanotubes. In: Proceedings of XXII International Materials Research Congress. Materials Research Society: Cancun, 2013, vol. 1611

    Google Scholar 

  31. Peyvandi A, Sbia L A, Soroushian P, Sobolev K. Effect of the cementitious paste density on the performance efficiency of carbon nanofiber in concrete nanocomposite. Construction & Building Materials, 2013, 48: 265–269

    Article  Google Scholar 

  32. Konsta-Gdoutos M S, Metaxa Z S, Shah S P. Multi-scale mechanical and fracturecharacteristics and early-age strain capacity of high performance carbonnanotube/cement nanocomposites. Cement and Concrete Composites, 2010, 32(2): 110–115

    Article  Google Scholar 

  33. Metaxa Z S, Konsta-Gdoutos M S, Shah S P. Carbon nanofiber cementitious composites: Effect of debulking procedure on dispersion and reinforcing efficiency. Cement and Concrete Composites, 2013, 36: 25–32

    Article  Google Scholar 

  34. Sanchez F, Ince C. Microstructure and macroscopic properties of hybridcarbon nanofiber/silica fume cement composites. Composites Science and Technology, 2009, 69(7-8): 1310–1318

    Article  Google Scholar 

  35. Hoheneder J, Flores-Vivian I, Lin Z, Zilberman P, Sobolev K. The performance of stress-sensing smart fiber reinforced composites in moist and sodium chloride environments. Composites. Part B, Engineering, 2015, 73: 89–95

    Article  Google Scholar 

  36. Konsta-Gdoutos M S, Aza C A. Self sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures. Cement and Concrete Composites, 2014, 53: 162–169

    Article  Google Scholar 

  37. Han B, Yu X, Kwon E. A self-sensing carbon nanotube/cement composite for traffic monitoring. Nanotechnology, 2009, 20(44): 445501

    Article  Google Scholar 

  38. Cassar L, Pepe C, Tognon G, Guerrini G L, Amadelli R. White Cement For Architectural Concrete Possessing Photocatalytic Properties. In: Proceedings of the 11th International Congress on the Chemistry of Cement (ICCC), Durban, South Africa, 2003

    Google Scholar 

  39. Chen J, Poon C. Photocatalytic construction and building materials: fromfundamentals to applications. Building and Environment, 2009, 44(9): 1899–1906

    Article  Google Scholar 

  40. Faraldos M, Kropp R, Anderson M A, Sobolev K. Photocatalytic hydrophobic concrete coatings to combat air pollution. Catalysis Today, 2016, 259: 228–236

    Article  Google Scholar 

  41. Kamaruddin S, Stephan D. Quartz–titania composites for the photocatalytical modification of construction materials. Cement and Concrete Composites, 2013, 36: 109–115

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Sobolev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobolev, K. Modern developments related to nanotechnology and nanoengineering of concrete. Front. Struct. Civ. Eng. 10, 131–141 (2016). https://doi.org/10.1007/s11709-016-0343-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-016-0343-0

Keywords

Navigation