Advertisement

Advanced cement based nanocomposites reinforced with MWCNTs and CNFs

  • Emmanuel E. Gdoutos
  • Maria S. Konsta-Gdoutos
  • Panagiotis A. Danoglidis
  • Surendra P. Shah
Research Article

Abstract

Cementitious materials reinforced with well dispersed multiwall carbon nanotubes (MWCNTs) and carbon nanofibers (CNFs) at the nanoscale were fabricated and tested. The MWCNTs and CNFs were dispersed by the application of ultrasonic energy and the use of a superplasticizer. Mechanical and fracture properties including flexural strength, Young’s modulus, flexural and fracture toughness were measured and compared with similarly processed reference cement based mixes without the nano-reinforcement. The MWCNTs and CNFs reinforced mortars exhibited superior properties demonstrated by a significant improvement in flexural strength (106%), Young’s modulus (95%), flexural toughness (105%), effective crack length (30%) and fracture toughness (120%).

Keywords

multi-walled carbon nanotubes carbon nanofibers mortars toughness Young’s modulus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belytschko T, Xiao S P, Schatz G C, Ruoff R. Atomistic simulations of nanotube fracture. Physical Review B: Condensed Matter and Materials Physics, 2002, 65(23): 235430–235437CrossRefGoogle Scholar
  2. 2.
    Shah S P, Konsta-Gdoutos M S, Metaxa Z S. Highly Dispersed Carbon Nanotube-Reinforced Cement-Based Materials. US Patent, WO/2009/099640, 2009Google Scholar
  3. 3.
    Hersam MC, Seo J-W T, Shah S P, Konsta-Gdoutos MS, Metaxa Z S. Highly Concentrated Carbon Nanotube Suspensions for Cementitious Materials and Method of Reinforcing Such Materials. US Patent, US8865107 B2 and US201200428 06 A1, 2014Google Scholar
  4. 4.
    Konsta-Gdoutos M S, Metaxa Z S, Shah S P. Highly Dispersed Carbon Nanotubes Reinforced Cement Based Materials. Cement and Concrete Research, 2010, 40(7): 1052–1059CrossRefGoogle Scholar
  5. 5.
    Metaxa Z S, Konsta-Gdoutos M S, Shah S P. Carbon Nanotubes Reinforced Concrete, ACI Special Publication on Nanotechnology of Concrete. The Next Big Thing is Small, 2009, 267, 11–20Google Scholar
  6. 6.
    Shah S P, Konsta-Gdoutos M S, Metaxa Z S. Exploration of Fracture Characteristics, Nanoscale Properties and Nanostructure of Cementitious Matrices with Carbon Nanotubes and Carbon Nanofibers. Seoul: Korea Concrete Institute, 2010Google Scholar
  7. 7.
    Konsta-Gdoutos M S, Metaxa Z S, Shah S P. Multi-scale Mechanical and Fracture Characteristics and Early-age Strain Capacity of High Performance Carbon Nanotube/Cement Nanocomposites. Cement and Concrete Composites, 2010, 32(2): 110–115CrossRefGoogle Scholar
  8. 8.
    Metaxa Z S, Konsta-Gdoutos M S, Shah S P. Carbon nanofiber cementitious composites: Effect of debulking procedure on dispersion and reinforcing efficiency. Cement and Concrete Composites, 2010, 32: 110–115CrossRefGoogle Scholar
  9. 9.
    Gdoutos E E. Fracture mechanics: An introduction. New York: Springer, 2006zbMATHGoogle Scholar
  10. 10.
    Jenq Y, Shah S P. Two parameter fracture model for concrete. Journal of Engineering Mechanics, 1985, 111(10): 1227–1241CrossRefGoogle Scholar
  11. 11.
    Siddique R, Mehta A. Effect of carbon nanotubes on properties of cement mortars. Construction and Building Materials, 2014, 50, 116–129CrossRefGoogle Scholar
  12. 12.
    Yazdani N, Mohanam V. Carbon Nano-Tube and Nano-Fiber in Cement Mortar: Effect of Dosage Rate and Water- Cement Ratio. International Journal of Material Science, 2014, 4(2): 45–52CrossRefGoogle Scholar
  13. 13.
    Sobolkina A, Mechtcherine V, Khavrus V, Maier D, Mende M, Ritschel M, Leonhardt A. Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix. Cement and Concrete Composites, 2012, 34(10): 1104–1113CrossRefGoogle Scholar
  14. 14.
    Esmaeili J, Mohammadjafari A R. Increasing flexural strength and toughness of cement mortar using multi-walled Carbon nanotubes. International Journal of Nano Dimention, 2014, 5: 399–407Google Scholar
  15. 15.
    Lawrence J G, Berhan LM, Nadarajah A. Structureal transformation of vapor grown carbon nanofiber studied by HRTEM. Journal of Nanoparticle Research, 2008, 10(7): 1155–1167CrossRefGoogle Scholar
  16. 16.
    Tibbetts G G, Lake M L, Strong K L, Rice B P. A review of the fabrication andproperties of vapor-grown carbon nanofiber/polymer composites. Composites Science and Technology, 2007, 67(7-8): 1709–1718CrossRefGoogle Scholar
  17. 17.
    Chen Y L, Liu B, He X Q, Huang Y, Hwang, K C. Failure analysis and the optimal toughness design of carbon nanotube-reinforced composites Comp. Sciences et Techniques (Paris), 2010, 70: 1360–1367Google Scholar
  18. 18.
    Chen Y, Wang S, Liu B, Zhang J. Effects of geometrical and mechanical properties of fiber and matrix on composite fracture toughness. Composite Structures, 2015, 122: 496–506CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Emmanuel E. Gdoutos
    • 1
  • Maria S. Konsta-Gdoutos
    • 1
  • Panagiotis A. Danoglidis
    • 1
  • Surendra P. Shah
    • 2
  1. 1.Department of Civil EngineeringDemocritus University of ThraceXanthiGreece
  2. 2.Northwestern UniversityEvanstonUSA

Personalised recommendations