Skip to main content
Log in

Elasto-plastic fatigue crack growth analysis of plane problems in the presence of flaws using XFEM

  • Research Article
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

In this paper, elasto-plastic XFEM simulations have been performed to evaluate the fatigue life of plane crack problems in the presence of various defects. The stress-strain response of the material is modeled by Ramberg-Osgood equation. The von-Mises failure criterion has been used with isotropic hardening. The J-integral for two fracture modes (mode-I and mode-II) is obtained by decomposing the displacement and stress fields into their symmetric and antisymmetric parts, then individual stress intensity factors are extracted from J-integral. The fatigue life obtained by EPFM is found quite close to that obtained by LEFM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wolf E. Fatigue crack closure under cyclic tension. Engineering Fracture Mechanics, 1970, 2(1): 37–45

    Article  Google Scholar 

  2. Guo W, Wang C H, Rose L R F. Influence of cross-sectional thickness on fatigue crack growth. Fatigue & Fracture of Engineering Materials & Structure, 1999, 22(5): 437–444

    Article  Google Scholar 

  3. De Matos P F P, Nowell D. Experimental and numerical investigation of thickness effects in plasticity-induced fatigue crack closure. International Journal of Fatigue, 2009, 31(11–12): 1795–1804

    Article  Google Scholar 

  4. Antunes F V, Branco R, Costa J D, Rodrigues M. Plasticity induced crack closure in middle-crack tension specimen: Numerical versus experimental. Fatigue & Fracture of Engineering Materials & Structure, 2010, 33(10): 673–686

    Article  Google Scholar 

  5. Newman J C Jr. A crack-closure model for predicting fatigue crack growth under aircraft spectrum loading. ASTM STP 748, Philadelphia, PA, 1981, 53–84

    Google Scholar 

  6. Budiansky B, Hutchinson J W. Analysis of closure in fatigue crack growth. ASME Journal of Applied Mechanics, 1992, 42: 389–400

    Google Scholar 

  7. Newman J C Jr. Finite element analysis of fatigue crack closure. ASTM STP 590, Philadelphia, PA, 1976, 281–301

    Google Scholar 

  8. Blom A F, Holm D K. An experimental and numerical study of crack closure. Engineering Fracture Mechanics, 1985, 22(6): 997–1011

    Article  Google Scholar 

  9. McClung R C, Thacker B H, Roy S. Finite element visualization of fatigue crack closure in plane stress and plane strain. International Journal of Fracture, 1991, 50: 27–49

    Google Scholar 

  10. Solanki K, Daniewicz S R, Newman J C Jr. Finite element modeling of plasticity-induced crack closure with emphasis on geometry and mesh refinement effects. Engineering Fracture Mechanics, 2003, 70(12): 1475–1489

    Article  Google Scholar 

  11. Alizadeh H, Hills D A, De Matos P F P, Nowell D, Pavier M J, Paynter R J, Smith D J, Simandjuntak S. A comparison of two and three-dimensional analysis of fatigue crack closure. International Journal of Fatigue, 2007, 29(2): 222–231

    Article  MATH  Google Scholar 

  12. Ellyin F, Ozah F. The effect of material model in describing mechanism of plasticity-induced crack closure under variable cyclic loading. International Journal of Fracture, 2007, 143(1): 15–33

    Article  MATH  Google Scholar 

  13. Toribio J, Kharin V. Finite-deformation analysis of the crack-tip fields under cyclic loading. International Journal of Solids and Structures, 2009, 46(9): 1937–1952

    Article  MATH  Google Scholar 

  14. Cheung S, Luxmoore A R. A finite element analysis of stable crack growth in an aluminium alloy. Engineering Fracture Mechanics, 2003, 70(9): 1153–1169

    Article  Google Scholar 

  15. Yan A M, Nguyen-Dang H. Multiple-cracked fatigue crack growth by BEM. Computational Mechanics, 1995, 16(5): 273–280

    Article  MATH  Google Scholar 

  16. Yan X. A boundary element modeling of fatigue crack growth in a plane elastic plate. Mechanics Research Communications, 2006, 33(4): 470–481

    Article  MATH  Google Scholar 

  17. Belytschko T, Gu L, Lu Y Y. Fracture and crack growth by elementfree Galerkin methods. Modelling and Simulation in Materials Science and Engineering, 1994, 2(3A): 519–534

    Article  MathSciNet  Google Scholar 

  18. Belytschko T, Lu Y Y, Gu L. Crack propagation by element-free Galerkin methods. Engineering Fracture Mechanics, 1995, 51(2): 295–315

    Article  Google Scholar 

  19. Duflot M, Nguyen-Dang H. Fatigue crack growth analysis by an enriched meshless method. Journal of Computational and Applied Mathematics, 2004, 168(1–2): 155–164

    Article  MATH  MathSciNet  Google Scholar 

  20. Rabczuk T, Belytschko T. A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering, 2007, 196(29–30): 2777–2799

    Article  MATH  MathSciNet  Google Scholar 

  21. Rabczuk T, Areias P M A, Belytschko T. A meshfree thin shell method for non-linear dynamic fracture. International Journal for Numerical Methods in Engineering, 2007, 72(5): 524–548

    Article  MATH  MathSciNet  Google Scholar 

  22. Rabczuk T, Bordas S, Zi G. A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics. Computational Mechanics, 2007, 40(3): 473–495

    Article  MATH  Google Scholar 

  23. Rabczuk T, Samaniego E. Discontinuous modelling of shear bands using adaptive meshfree methods. Computer Methods in Applied Mechanics and Engineering, 2008, 197(6–8): 641–658

    Article  MATH  MathSciNet  Google Scholar 

  24. Bordas S, Rabczuk T, Zi G. Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment. Engineering Fracture Mechanics, 2008, 75(5): 943–960

    Article  Google Scholar 

  25. Nguyen V P, Rabczuk T, Bordas S, Duflot M. Meshless methods: A review and computer implementation aspects. Mathematics and Computers in Simulation, 2008, 79(3): 763–813

    Article  MATH  MathSciNet  Google Scholar 

  26. Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601–620

    Article  MATH  MathSciNet  Google Scholar 

  27. Stolarska M, Chopp D, Moes N, Belytschko T. Modeling crack growth by level sets in the extended finite element method. International Journal for Numerical Methods in Engineering, 2001, 51(8): 943–960

    Article  MATH  Google Scholar 

  28. Sukumar N, Chopp D L, Moes N, Belytschko T. Modeling of holes and inclusions by level sets in the extended finite element method. Computer Methods in Applied Mechanics and Engineering, 2001, 190(46–47): 6183–6200

    Article  MATH  MathSciNet  Google Scholar 

  29. Rabczuk T, Belytschko T. Cracking particles: A simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343

    Article  MATH  Google Scholar 

  30. Rabczuk T, Belytschko T. Application of particle methods to static fracture of reinforced concrete structures. International Journal of Fracture, 2006, 137(1–4): 19–49

    Article  MATH  Google Scholar 

  31. Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37–40): 2437–2455

    Article  MATH  Google Scholar 

  32. Rabczuk T, Zi G, Gerstenberger A, Wall W A. A new crack tip element for the phantom-node method with arbitrary cohesive cracks. International Journal for Numerical Methods in Engineering, 2008, 75(5): 577–599

    Article  MATH  Google Scholar 

  33. Bordas S P A, Rabczuk T, Hung N X, Nguyen V P, Natarajan S, Bog T, Quan D M, Hiep N V. Strain smoothing in FEM and XFEM. Computers & Structures, 2010, 88(23–24): 1419–1443

    Article  Google Scholar 

  34. Bordas S P A, Natarajan S, Kerfriden P, Augarde C E, Mahapatra D R, Rabczuk T, Pont S D. On the performance of strain smoothing for quadratic and enriched finite element approximations (XFEM/ GFEM/PUFEM). International Journal for Numerical Methods in Engineering, 2011, 86(4–5): 637–666

    Article  MATH  Google Scholar 

  35. Budarapu P R, Gracie R, Yang SW, Zhuang X, Rabczuk T. Efficient coarse graining in multiscale modeling of fracture. Theoretical and Applied Fracture Mechanics, 2014, 69: 126–143

    Article  Google Scholar 

  36. Amiri F, Anitescu C, Arroyo M, Bordas S P A, Rabczuk T. XLME interpolants, a seamless bridge between XFEM and enriched meshless methods. Computational Mechanics, 2014, 53(1): 45–57

    Article  MATH  MathSciNet  Google Scholar 

  37. Bhardwaj G, Singh I V, Mishra B K. Stochastic fatigue crack growth simulation of interfacial crack in bi-layered FGMs using XIGA. Computer Methods in Applied Mechanics and Engineering, 2015, 284: 186–229

    Article  MathSciNet  Google Scholar 

  38. Kumar S, Singh I V, Mishra B K, Rabczuk T. Modeling and simulation of kinked cracks by virtual node XFEM. Computer Methods in Applied Mechanics and Engineering, 2015, 283: 1425–1466

    Article  MathSciNet  Google Scholar 

  39. Singh I V, Mishra B K, Bhattacharya S, Patil R U. The numerical simulation of fatigue crack growth using extended finite element method. International Journal of Fatigue, 2012, 36(1): 109–119

    Article  Google Scholar 

  40. Dolbow J, Moes N, Belytschko T. An extended finite element method for modelling crack growth with frictional contact. Computer Methods in Applied Mechanics and Engineering, 2001, 190(51–52): 6825–6846

    Article  MATH  MathSciNet  Google Scholar 

  41. Moes N, Gravouil A, Belytschko T. Non-planar 3D crack growth with the extended finite element and level set–Part I: Mechanical model. International Journal for Numerical Methods in Engineering, 2002, 53: 2549–2568

    Article  MATH  Google Scholar 

  42. Pathak H, Singh A, Singh I V, Yadav S K. A simple and efficient XFEM approach for 3-D cracks simulations. International Journal of Fracture, 2013, 181(2): 189–208

    Article  Google Scholar 

  43. Rethore J, Gravouil A, Combescure A. An energy-conserving scheme for dynamic crack growth using the extended finite element method. International Journal for Numerical Methods in Engineering, 2005, 63(5): 631–659

    Article  MATH  MathSciNet  Google Scholar 

  44. Kumar S, Singh I V, Mishra B K, Singh A. New enrichments in XFEM to model dynamic crack response of 2-D elastic solids. International Journal of Impact Engineering, 2015

    Google Scholar 

  45. Natarajan S, Baiz P M, Bordas S, Rabczuk T, Kerfriden P. Natural frequencies of cracked functionally graded material plates by the extended finite element method. Composite Structures, 2011, 93(11): 3082–3092

    Article  Google Scholar 

  46. Baiz P M, Natarajan S, Bordas S P A, Kerfriden P, Rabczuk T. Linear buckling analysis of cracked plates by SFEM and XFEM. Journal of Mechanics of Materials and Structures, 2011, 6(9–10): 1213–1238

    Article  Google Scholar 

  47. Vu-Bac N, Nguyen-Xuan H, Chen L, Bordas S, Kerfriden P, Simpson R N, Liu G R, Rabczuk T. A Node-based smoothed extended finite element method (NS-XFEM) for fracture analysis, CMES. Computer Modeling in Engineering & Sciences, 2011, 73: 331–356

    MATH  MathSciNet  Google Scholar 

  48. Chen L, Rabczuk T, Bordas S P A, Liu G R, Zeng K Y, Kerfriden P. Extended finite element method with edge-based strain smoothing (Esm-XFEM) for linear elastic crack growth. Computer Methods in Applied Mechanics and Engineering, 2012, 209–212: 250–265

    Article  MathSciNet  Google Scholar 

  49. Legrain G, Moes N, Verron E. Stress analysis around crack tips in finite strain problems using the extended finite element method. International Journal for Numerical Methods in Engineering, 2005, 63: 209–314

    Article  MathSciNet  Google Scholar 

  50. Ji H, Chopp D, Dolbow J E. A hybrid finite element/level set method for modelling phase transformation. International Journal for Numerical Methods in Engineering, 2002, 54(8): 1209–1233

    Article  MATH  MathSciNet  Google Scholar 

  51. Elguedj T, Gravouil A, Combescure A. A mixed augmented Lagrangian-extended finite element method for modeling elasticplastic fatigue crack growth with unilateral contact. International Journal for Numerical Methods in Engineering, 2007, 71(13): 1569–1597

    Article  MATH  MathSciNet  Google Scholar 

  52. Kumar S, Singh I V, Mishra B K. XFEM simulation of stable crack growth using J-R curve under finite strain plasticity. International Journal of Mechanics and Materials in Design, 2014, 10(2): 165–177

    Article  Google Scholar 

  53. Budarapu P R, Gracie R, Bordas S P A, Rabczuk T. An adaptive multiscale method for quasi-static crack growth. Computational Mechanics, 2014, 53(6): 1129–1148

    Article  MATH  Google Scholar 

  54. Yang S W, Budarapu P R, Mahapatra D R, Bordas S P A, Zi G, Rabczuk T. A meshless adaptive multiscale method for fracture. Computational Materials Science, 2015, 96: 382–395

    Article  Google Scholar 

  55. Nanthakumar S S, Lahmer T, Rabczuk T. Detection of multiple flaws in piezoelectric structures using XFEM and level sets. Computer Methods in Applied Mechanics and Engineering, 2014, 275: 98–112

    Article  MATH  MathSciNet  Google Scholar 

  56. Kumar S, Singh I V, Mishra B K. A multigrid coupled (FE-EFG) approach to simulate fatigue crack growth in heterogeneous materials. Theoretical and Applied Fracture Mechanics, 2014, 72: 121–135

    Article  Google Scholar 

  57. Kumar S, Singh I V, Mishra B K. A homogenized XFEM approach to simulate fatigue crack growth problems. Computers & Structures, 2015, 150: 1–22

    Article  Google Scholar 

  58. Vu-Bac N, Rafiee R, Zhuang X, Lahmer T, Rabczuk T. Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters. Composites. Part B, Engineering, 2015, 68: 446–464

    Article  Google Scholar 

  59. Vu-Bac N, Silani M, Lahmer T, Zhuang X, Rabczuk T. A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites. Computational Materials Science, 2015, 96: 520–535

    Article  Google Scholar 

  60. Hinton E, Owen D. Finite Element in Plasticity. Pineridge Press Limited, 1980, 215–265

    Google Scholar 

  61. Moes N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 1999, 46: 131–150

    Article  MATH  Google Scholar 

  62. Bland D R. The associated flow rule of plasticity. Journal of the Mechanics and Physics of Solids, 1957, 6(1): 71–78

    Article  MATH  MathSciNet  Google Scholar 

  63. Fries T P. A corrected XFEM approximation without problems in blending elements. International Journal for Numerical Methods in Engineering, 2008, 75(5): 503–532

    Article  MATH  MathSciNet  Google Scholar 

  64. McClung R C, Sehitoglu H. On the finite element analysis of fatigue crack closure-1. Basic modeling issues. Engineering Fracture Mechanics, 1983, 33(2): 237–252

    Article  Google Scholar 

  65. McClung R C, Sehitoglu H. On the finite element analysis of fatigue crack closure-2. Numerical results. Engineering Fracture Mechanics, 1983, 33(2): 253–257

    Article  Google Scholar 

  66. Solanki K, Daniewicz S R, Newman J C Jr. A new methodology for computing crack opening values from finite element analyses. Engineering Fracture Mechanics, 2004, 71(7–8): 1165–1175

    Article  Google Scholar 

  67. Elguedj T, Gravouil A, Combescure A. Appropriate extended functions for XFEM simulation of plastic fracture mechanics. Computer Methods in Applied Mechanics and Engineering, 2006, 195(7–8): 501–515

    Article  MATH  Google Scholar 

  68. Hutchinson J W. Singular behavior at the end of a tensile crack in a hardening material. Journal of the Mechanics and Physics of Solids, 1968, 16(1): 13–31

    Article  MATH  Google Scholar 

  69. Rice J R, Rosengren G F. Plane strain deformation near a crack tip in a power-law hardening material. Journal of the Mechanics and Physics of Solids, 1968, 16(1): 1–2

    Article  MATH  Google Scholar 

  70. Li F Z, Shih C F, Needleman A. A comparison of methods for calculating energy release rates. Engineering Fracture Mechanics, 1985, 21(2): 405–421

    Article  Google Scholar 

  71. Ishikawa H. A finite element analysis of stress intensity factors for combined tensile and shear loading by only a virtual crack extension. International Journal of Fracture, 1980, 16(5): 243–246

    Article  Google Scholar 

  72. Bui H D. Associated path independent J-integrals for separating mixed modes. Journal of the Mechanics and Physics of Solids, 1983, 6(6): 439–448

    Article  MathSciNet  Google Scholar 

  73. Erdogan F, Sih G. On the crack extension in plates under plane loading and transverse shear. Journal of Basic Engineering, 1963, 85(4): 519–527

    Article  Google Scholar 

  74. De Matos P F P, Nowell D. On the accurate assessment of crack opening and closing stresses in plasticity-induced fatigue crack closure problems. Engineering Fracture Mechanics, 2007, 74(10): 1579–1601

    Article  Google Scholar 

  75. Antunes F V, Chegini A G, Correia L, Branco R. Numerical study of contact forces for crack closure analysis. International Journal of Solids and Structures, 2014, 51(6): 1330–1339

    Article  Google Scholar 

  76. Paris P C, Gomez M P, Anderson WE. A rational analytic theory of fatigue. Trend in Engineering, 1961, 13: 9–14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Shedbale, A.S., Singh, I.V. et al. Elasto-plastic fatigue crack growth analysis of plane problems in the presence of flaws using XFEM. Front. Struct. Civ. Eng. 9, 420–440 (2015). https://doi.org/10.1007/s11709-015-0305-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-015-0305-y

Keywords

Navigation