Skip to main content
Log in

Experimental and statistical investigation of a new concrete-composite beam with encased polymer tube wrapped by FRP

  • Research Article
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

A new concrete-composite beam with high mechanical performances to weight ratio is developed in this study. The proposed design technique consists to embed a cylindrical polymer tube wrapped by a GFRP Jacket in the mechanically ineffective concrete tensile zone. An experimental investigation is carried out on composite beams under bending loads until failure to evaluate the flexural capacity and the corresponding failure mechanisms. Based on the experimental results, statistical and preliminary reliability analyses using the FORM method are performed to assess the safety margin of the new beam. The confrontation between test and simulation results shows a satisfactory agreement, and represents a promising revelation regarding the improvement in terms of strength and ductility of such design compared to conventional reinforced concrete beams with traditional one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bentayeb F, Ait Tahar K, Chateauneuf A. New technique for reinforcement of concrete columns confined by embedded composite grid. Construction & Building Materials, 2008, 22(8): 1624–1633

    Article  Google Scholar 

  2. Ait Tahar K, Taouche F, Bouamra Y. Parametric analysis of the models of confinement of the concrete column. Key Engineering Materials, Trans Tech Publications, Switzerland, 2012, 498: 1–14

    Article  Google Scholar 

  3. Vasudevan G, Kothandaraman S, Azhagarsamy S. Study on nonlinear flexural behavior of reinforced concrete beams using ansys by discrete reinforcement modeling. Strength of Materials, 2013, 45(2): 231–241

    Article  Google Scholar 

  4. Hassaine Daouadji T. Analytical analysis of the interfacial stress in damaged reinforced concrete beams strengthened by bonded composite plates. Strength of Materials, 2013, 45(5): 587–597

    Article  Google Scholar 

  5. Prachasaree W. Structural performance of light weight multi cellular FRP composite bridge deck using finite element analysis. Journal of Wuhan University of Technology-Mater. Science Editor, 2012

    Google Scholar 

  6. Wang S, Wang Z. Mechanism of improving ductility of high strength concrete T-section beam confined by CFRP sheet subjected to flexural loading. J. Cent. South Univ, 2013, 20(1): 246–255

    Article  Google Scholar 

  7. Sundarraja M C, Prabhu G G. Experimental investigation on strengthening of CFST members under flexure using CFRP fabric. Arabian Journal for Science and Engineering, 2014, 39(2): 659–668

    Article  Google Scholar 

  8. Kang T H K, Ary M I. Shear-strengthening of reinforced & prestressed concrete beams using FRP: Part II — experimental investigation. International Journal of Concrete Structures and Materials, 2012, 6(1): 49–57

    Article  Google Scholar 

  9. Hajipour A, Maheri M R. A high performance fibre reinforced cement based plaster for retrofitting RC members. Materials and Structures, 2013, 46(1–2): 277–288

    Article  Google Scholar 

  10. Mufi A A, Erki M A, Jaeger L G. Advanced composite materials with application to bridges. Canadian Society for Civil Engineering, 1991, 297

    Google Scholar 

  11. Garden H N. An experimental study of the failure modes of reinforced concrete beams strengthened with prestressed carbon composite plates. Composites Part B, 1998, 411–424

    Google Scholar 

  12. Wu Z, Li W, Sakuma N. Innovative externally bonded FRP/concrete hybrid flexural members. Composite Structures, 2006, 72(3): 289–300

    Article  Google Scholar 

  13. Wang J, Zhang C. Nonlinear fracture mechanics of flexural-shear crack induced debonding of FRP strengthened concrete beams. International Journal of Solids and Structures, 2008, 45(10): 2916–2936

    Article  MATH  Google Scholar 

  14. Ahmed A, Kodur V K R. Effect of bond degradation on fire resistance of FRP-strengthened reinforced concrete beams. Composites. Part B, Engineering, 2011, 42(2): 226–237

    Article  Google Scholar 

  15. Berthelot J M. Matériaux composites, comportement mécanique et analyse des structures. Lavoisier 2005, 172, 245

    Google Scholar 

  16. Pimenta R J, Diniz S M C, Queiroz G, Fakury R H, Galvão A, Rodrigues F C. Reliability-based design recommendations for composite corrugated-web beams. Probabilistic Engineering Mechanics, 2012, 28: 185–193

    Article  Google Scholar 

  17. Ribeiro S E C. Análise da confiabilidade de vigas de concreto armado com plástico reforçado por fibras. PhD thesis, Federal University of Minas Gerais-UFMG, Belo Horizonte, Brazil; 2009

    Google Scholar 

  18. Dehmous H, Welemane H. Multi-scale reliability analysis of composite structures — Application to the Laroin footbridge. Engineering Failure Analysis, 2011, 18(3): 988–998

    Article  Google Scholar 

  19. He Z, Qiu F. Probabilistic assessment on flexural capacity of GFRPreinforced concrete beams designed by guideline ACI 440.1R-06. Construction & Building Materials, 2011, 25(4): 1663–1670

    Article  MathSciNet  Google Scholar 

  20. Frangopol D M, Ide Y, Iwaki I. Effects of load path and load correlation on the reliability of concrete columns. Probabilistic mechanics and structural reliability. In: Proceedings of the seventh specialty conference. Worcester, Massachusetts, USA, 1996, 206–219

    Google Scholar 

  21. Frangopol D M, Ide Y, Spacone E, Iwaki I. A new look at reliability of reinforced concrete columns. J Struct Saf, 1996, 2(18): 123–150

    Article  Google Scholar 

  22. Milton de Araújo J. Milton de araujo J. Probabilistic analysis of reinforced concrete columns. Advances in Engineering Software, 2001, 32(12): 871–879

    Article  MATH  Google Scholar 

  23. Triantafillou T C, Plevris N. Strengthening of RC beams with epoxy-bonded fibre-composite materials. Materials and Structures, 1992, 25(4): 201–211

    Article  Google Scholar 

  24. Cattaneo S, Giussani F, Mola F. Flexural behaviour of reinforced, prestressed and composite self-consolidating concrete beams. Construction & Building Materials, 2012, 36: 826–837

    Article  Google Scholar 

  25. Yan L, Chouw N. Compressive and flexural behaviour and theoretical analysis of flax fibre reinforced polymer tube encased coir fibre reinforced concrete composite. Materials & Design, 2013, 52: 801–811

    Article  Google Scholar 

  26. Yang D S, Park S K, Neale K W. Flexural behaviour of reinforced concrete beams strengthened with prestressed carbon composites. Composite Structures, 2009, 88(4): 497–508

    Article  Google Scholar 

  27. Promis G, Gabor A, Hamelin P. Analytical modeling of the bending behavior of textile reinforced mineral matrix composite beams. Composite Structures, 2011, 93(2): 792–801

    Article  Google Scholar 

  28. Al-Rousan R, Haddad R. NLFEA sulfate-damage reinforced concrete beams strengthened with FRP composites. Composite Structures, 2013, 96: 433–445

    Article  Google Scholar 

  29. El Batanouny M K, Larosche A, Mazzoleni P, Ziehl P H, Matta F, Zappa E. M. K. Identification of Cracking Mechanisms in Scaled FRP Reinforced Concrete Beams using Acoustic Emission. Experimental Mechanics, 2014, 54(1): 69–82

    Article  Google Scholar 

  30. Neves R A, Chateauneuf A, Venturini W S, Lemaire M. Reliability analysis of reinforced concrete grids with nonlinear material behavior. Reliability Engineering & System Safety, 2006, 91(6): 735–744

    Article  Google Scholar 

  31. Liu P L, Der Kiureghian A. Multivariate distribution models with pre described marginal and covariances. Probabilistic Engineering Mechanics, 1986, 1(2): 105–112

    Article  Google Scholar 

  32. Croston T. Etude expérimentale du comportement d’une poutre en béton arme en flexion 3 points réparée par matériaux composites (Approche probabiliste). Dissertation for the Doctoral Degree. Ecole Nationale Supérieure d’Arts et Métiers, Centre de Bordeaux, 2006

    Google Scholar 

  33. Lemaire M. Fiabilité des structures: couplage mécano-fiabiliste statique. Hermès-Lavoisier, Paris, 2005

    Google Scholar 

  34. Ribeiro S E C, Diniz S M C. Reliability-based design recommendations for FRP-reinforced concrete beams. Engineering Structures, 2013, 52: 273–283

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelmadjid Si Salem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si Salem, A., Ait Taleb, S. & Ait Tahar, K. Experimental and statistical investigation of a new concrete-composite beam with encased polymer tube wrapped by FRP. Front. Struct. Civ. Eng. 9, 154–162 (2015). https://doi.org/10.1007/s11709-015-0296-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-015-0296-8

Keywords

Navigation