Skip to main content

Mortarless structures based on topological interlocking


We review the principle of topological interlocking and analyze the properties of the mortarless structures whose design is based on this principle. We concentrate on structures built of osteomorphic blocks — the blocks possessing specially engineered contact surfaces allowing assembling various 2D and 3D structures. These structures are easy to build and can be made demountable. They are flexible, resistant to macroscopic fractures and tolerant to missing blocks. The blocks are kept in place without keys or connectors that are the weakest elements of the conventional interlocking structures. The overall structural integrity of these structures depends on the force imposed by peripheral constraint. The peripheral constraint can be provided in various ways: by an external frame or features of site topography, internal prestressed cables/tendons, or self-weight and is a necessary auxiliary element of the structure. The constraining force also determines the degree of delamination developing between the blocks due to bending and thus controls the overall flexibility of the structure thus becoming a new design parameter.

This is a preview of subscription content, access via your institution.


  1. 1.

    Harris H G, Oh K, Hamid A A. Development of new interlocking and mortarless block masonry units for efficient building systems. In: Proceedings of the 6th Canadian Masonry Symposium. Saskatoon, Canada, June 15–17, 1992

  2. 2.

    Anand K B, Ramamurthy K. Development and performance evaluation of interlocking-block masonry. Journal of Architectural Engineering, 2000, 6(2): 45–51

    Article  Google Scholar 

  3. 3.

    Gilroy D, Goffi E D. Modular interlocking brick system in wide use at BHP. AISE Steel Technology, Jan, 2001

  4. 4.

    Weinhuber K. Building with Interlocking Blocks. German Appropriate Technology Exchange, 1995,

  5. 5.

    Ramamurthy K, Kunhanandan E. Accelerated masonry construction: review and future prospects. Progress in Structural Engineering and Materials, 2004, 6(1): 1–9

    Article  Google Scholar 

  6. 6.

    Heyman J. The Stone Skeleton. Structural Engineering of Masonry Architecture. Cambridge: Cambridge University Press, 1997

    Google Scholar 

  7. 7.

    Brooks A, Adcock S. Dry Stone Walling. 2nd ed. Doncaster UK: BTCV, 1999

    Google Scholar 

  8. 8.

    Psycharis I N, Papastamatiou D Y, Alexandris A P. Parametric investigation of the stability of classical columns under harmonic and earthquake excitations. Earthquake Engineering & Structural Dynamics, 2000, 29(8): 1093–1109

    Article  Google Scholar 

  9. 9.

    Dyskin A V, Estrin Y, Kanel-Belov A J, et al. A new concept in design of materials and structures: assemblies of interlocked tetrahedron-shaped elements. Scripta Materialia, 2001, 44(12): 2689–2694

    Article  Google Scholar 

  10. 10.

    Dyskin A V, Estrin Y, Kanel-Belov A J, et al. Toughening by fragmentation — How topology helps. Advanced Engineering Materials, 2001, 3(11): 885–888

    Article  Google Scholar 

  11. 11.

    Khor C, Dyskin A V, Pasternak E, et al. Integrity and fracture of plate-like assemblies of topologically interlocked elements. In: Dyskin A V, Hu X Z, Sahouryeh E, eds. Structural Integrity and Fracture. Swets & Zeitlinger, Lisse, 2002, 449–456

    Google Scholar 

  12. 12.

    Dyskin A V, Estrin Y, Kanel-Belov A J, et al. Topological interlocking of platonic solids: a way to new materials and structures. Philosophical Magazine Letters, 2003, 83(3): 197–203

    Article  Google Scholar 

  13. 13.

    Dyskin A V, Estrin Y, Kanel-Belov A J, et al. A new principle in design of composite materials: reinforcement by interlocked elements. Composites Science and Technology, 2003, 63(3–4): 483–491

    Article  Google Scholar 

  14. 14.

    Dyskin A V, Estrin Y, Pasternak E, et al. Fracture resistant structures based on topological interlocking with non-planar contacts. Advanced Engineering Materials, 2003, 5(3): 116–119

    Article  Google Scholar 

  15. 15.

    Estrin Y, Dyskin A V, Pasternak E, et al. Topological interlocking of protective tiles for Space Shuttle. Philosophical Magazine Letters, 2003, 83(6): 351–355

    Article  Google Scholar 

  16. 16.

    Estrin Y, Dyskin A V, Pasternak E, et al. Negative stiffness of a layer with topologically interlocked elements. Scripta Materialia, 2004, 50(2): 291–294

    Article  Google Scholar 

  17. 17.

    Dyskin A V, Estrin Y, Kanel-Belov A J, et al. Interlocking properties of buckyballs. Physics Letters [Part A], 2003, 319(3–4): 373–378

    Article  Google Scholar 

  18. 18.

    Dyskin A V, Estrin Y, Pasternak E, et al. The principle of topological interlocking in extraterrestrial construction. Acta Astronautica, 2005, 57(1): 10–21

    Article  Google Scholar 

  19. 19.

    Molotnikov A, Estrin Y, Dyskin A V, et al. Percolation mechanism of failure of a planar assembly of interlocked osteomorphic elements. Engineering Fracture Mechanics, 2007, 74(8): 1222–1232

    Article  Google Scholar 

  20. 20.

    Schaare S, Dyskin A V, Estrin Y, et al. Point loading of assemblies of interlocked cube-shaped elements. International Journal of Engineering Science, 2008, 46(12): 1228–1238

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Kanel-Belov A J, Dyskin A V, Estrin Y, et al. Interlocking of convex polyhedra: towards a geometric theory of fragmented solids. Moscow Mathematical Journal, 2010, arXiv:0812.5089v1

  22. 22.

    Estrin Y, Dyskin A V, Pasternak E. Topological interlocking as a materials design concept. Materials Science and Engineering C, 2011, 31(6): 1189–1194

    Article  Google Scholar 

  23. 23.

    Goodman R E, Shi G H. Block Theory and its Application to Rock Engineering. Englewood NJ: Prentice-Hall, 1985

    Google Scholar 

  24. 24.

    Glickman M. The G-block system of vertically interlocking paving. In: Proceedings of the Second International Conference on Concrete Block Paving. Delft, April 10–12, 1984, 345–348

  25. 25.

    Robson D A. Deutsches Patent DE-AS 25 54 516, 1978

  26. 26.

    Autruffe A, Pelloux F, Brugger C, et al. Indentation behaviour of interlocked structures made of ice: influence of the friction coefficient. Advanced Engineering Materials, 2007, 9(8): 664–666

    Article  Google Scholar 

  27. 27.

    Dyskin A V, Caballero A. Orthogonal crack approaching an interface. Engineering Fracture Mechanics, 2009, 76(16): 2476–2485

    Article  Google Scholar 

  28. 28.

    Shackel B. Design and Construction of Interlocking Pavements. London and New York: Elsevier Applied Science, 1990

    Google Scholar 

  29. 29.

    Dyskin A V, Yong D, Pasternak E, et al. Stresses in topologically interlocking structures: two scale approach. In: Denier J, Finn M D, Mattner T, eds. ICTAM 2008, XXII International Congress of Theoretical and Applied Mechanics. Adelaide, August 24–29, 2008, CD-ROM Proceedings ISBN 978-0-9805142-1-6, 2008, 10134

  30. 30.

    Goodman R E. Introduction to Rock Mechanics. 2nd ed. JohnWiley & Sons, 1989

  31. 31.

    Cherepanov G P. Mechanics of Brittle Fracture. New York: McGraw Hill, 1979

    MATH  Google Scholar 

  32. 32.

    Barnett R L, Hermann P C. Studies in prestressed and segmented brittle structures. IIT Research Institute, Chicago, 1966

    Google Scholar 

  33. 33.

    Backshall D. Bending Stiffness of Interlocking Structures. Honours Dissertation, UWA. 2009

    Google Scholar 

  34. 34.

    Carlesso M, Molotnikov A, Krause T, et al. Enhancement of sound absorption properties using topologically interlocked elements. Scripta Materialia, 2012, 66(7): 483–486

    Article  Google Scholar 

  35. 35.

    Cooper M R. Deflection and failure modes in dry-stone retaining walls. Ground Engineering, 1986, 19(8): 28–33

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Arcady V. Dyskin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dyskin, A.V., Pasternak, E. & Estrin, Y. Mortarless structures based on topological interlocking. Front. Struct. Civ. Eng. 6, 188–197 (2012).

Download citation


  • topological interlocking
  • fragmented structures
  • segmented structures
  • constraint
  • delamination
  • bending stiffness