Skip to main content
Log in

Continuous modeling of soil morphology —thermomechanical behavior of embankment dams

  • Research Article
  • Published:
Frontiers of Architecture and Civil Engineering in China Aims and scope Submit manuscript

Abstract

Macroscopic modeling of soils is based on a number of properties that refer to the mesoscopic morphology. The most fundamental parameters of this art are: 1) coupling parameters between partial stresses of components and deformations of components, 2) porosities, 3) saturation, and 4) permeability and diffusivity, tortuosity.

The main aim of this paper is to present in juxtaposition continuous one-, two-, and three-component models of geomaterials appearing in construction of embankment dams. In particular, the above mentioned features, especially saturation with water and seepage problems, modeling of fluidization yielding piping, and generalizations of the Darcy law and changes of porosity, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vaníček M, Vaníček I. Earth Structures in Transport, Water and Environmental Engineering (Geotechnical, Geological, and Earthquake Engineering). New York: Springer, 2008

    Google Scholar 

  2. Bowen R M. Incompressible porous media models by use of the theory of mixtures. International Journal of Engineering Science, 1980, 18(9):1129–1148

    Article  MATH  Google Scholar 

  3. Muir Wood D. Soil Behaviour and Critical State Soil Mechanics. Cambridge: Cambridge University Press, 1991

    Google Scholar 

  4. Muir Wood D. Geotechnical Modelling. Oxfordshire: Spon Press, 2004

    Book  Google Scholar 

  5. Lancellotta R. Geotechnical Engineering. Rotterdam: Balkema A A, 1995

    Google Scholar 

  6. Bauer E. Constitutive modeling of critical states in hypoplasticity. In: Pande, Pietruszczak, eds. Proceedings of the Fifth International Symposium on Numerical Models in Geomechanics. Rotterdam: Balkema A A, 1995, 1520

    Google Scholar 

  7. von Wolffersdorff P A. A hypoplastic relation for granular materials with a predefined limit state surface. Mechanics of Cohesivefrictional Materials, 1996, 1(3):251–271

    Article  Google Scholar 

  8. Kolymbas D. A ratedependent constitutive equation for soils. Mechanics Research Communications, 1977, 4(6):367–372

    Article  Google Scholar 

  9. Kolymbas D. Introduction to Hypoplasticity. Rotterdam: A A Balkema, 2000

    Google Scholar 

  10. Bauer E, Tantono S F, Zhu Y, Liu S, Kast K. Modeling rheological properties of materials for rockfill dams. In: Zhu Y, et al, eds, Long Time Effects and Seepage Behavior of Dams. Nanjing: Hohai University Press, 2008, 73–80

    Google Scholar 

  11. Goodman M A, Cowin S C. A continuum theory for granular materials. Archive for Rational Mechanics and Analysis, 1972, 44(4):249–266

    Article  MATH  MathSciNet  Google Scholar 

  12. Wang Y, Hutter K. A constitutive model of multiphase mixtures and its applications in shearing flows of saturated solid-fluid mixtures. Granular Matter, 1999, 1(4):163–181

    Article  Google Scholar 

  13. Wang Y, Hutter K. Shearing flows in a Goodman-Cowin type granular material-theory and numerical results. Particulate Science and Technology, 1999, 17(1–2):97–124

    Article  Google Scholar 

  14. Kirchner N. Thermodynamics of Structured Granular Materials. Dissertation for the Doctoral Degree. Berichte aus der Thermodynamik. Aachen: Shaker Verlag, 2001

    Google Scholar 

  15. Darcy H. Les Fontaines Publiques de la Ville de Dijon. Paris: Dalmont, 1856

    Google Scholar 

  16. von Terzaghi K. Erdbaumechanik auf bodenphysikalischer Grundlage. Leipzig: Deuticke, 1925

    MATH  Google Scholar 

  17. Bear J. Dynamics of Fluids in Porous Media. Dover: Dover Publication, 1972

    MATH  Google Scholar 

  18. Forchheimer P. Wasserbewegung durch Boden. Z Ver Deutsch Ing, 1901, 45:1782–1788

    Google Scholar 

  19. Wilhelm T, Wilmanski K. On the onset of flow instabilities in granular media due to porosity inhomogeneities. International Journal of Multiphase Flow, 2002, 28(12):1929–1944

    Article  MATH  Google Scholar 

  20. Wilmanski K. A few remarks on Biot’s model and linear acoustics of poroelastic saturated materials. Soil Dynamics and Earthquake Engineering, 2006, 26(6–7):509–536

    Article  Google Scholar 

  21. Gassmann F. Über die Elastizität poröser Medien. In: Vierteljahresschrift der Naturforschenden Gesellschaft in Zürich 96. 1951, 1:1–23

    MathSciNet  Google Scholar 

  22. Bowen R M. Compressible porous media models by use of the theory of mixtures. International Journal of Engineering Science, 1982, 20(6):697–735

    Article  MATH  Google Scholar 

  23. Passman S L, Nunziato J W, Walsh E K. A theory of multiphase mixtures. In: Truesdell C, ed. Rational Thermodynamics, Berlin: Springer, 1984

    Google Scholar 

  24. Faria S H, Hutter K, Kirchner N, Wang Y. Continuum Description of Granular Materials. Heidelberg: Springer, 2009

    Google Scholar 

  25. Wilmanski K. A Thermodynamic model of compressible porous materials with the balance equation of porosity. Transport in Porous Media, 1998, 32(1):21–47

    Article  Google Scholar 

  26. Wilmanski K. Thermomechanics of Continua. Heidelberg: Springer, 1998

    MATH  Google Scholar 

  27. Wilmanski K. Continuum Thermodynamics. Part I: Foundations. Singapore: World Scientific, 2008

    Book  MATH  Google Scholar 

  28. Albers B. Modeling and Numerical Analysis of Wave Propagation in Saturated and Partially Saturated Porous Media. Aachen: Shaker Verlag, 2010

    Google Scholar 

  29. Wilmanski K. On microstructural tests for poroelastic materials and corresponding Gassmanntype relations. Geotechnique, 2004, 54(9):593–603

    Article  Google Scholar 

  30. Biot M A, Willis D G. The elastic coefficients of the theory of consolidation. Journal of Applied Mechanics, 1957, 24:594–601

    MathSciNet  Google Scholar 

  31. Epstein N. On tortuosity and the tortuosity factor in ow and diffusion through porous media. Chemical Engineering Science, 1989, 44(3):777–779

    Article  Google Scholar 

  32. Kozeny J. Über kapillare Leitung des Wassers im Boden (Aufstieg, Versickerung und Anwendung auf die Bewässerung). Sber Akad Wiss Wien, 1927, 136 (Abt. IIa): 271–306

  33. Biot MA. Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low frequency range. Journal of the Acoustical Society of America, 1956, 28(2):168–178

    Article  MathSciNet  Google Scholar 

  34. Wilmanski K. Tortuosity and objective relative accelerations in the theory of porous materials. Proceedings of the Royal Society, Mathematical, Physical and Engineering Sciences, 2005, 461(2057):1533–1561

    Article  MATH  MathSciNet  Google Scholar 

  35. Wesselingh J A, Krishna R. Mass Transfer in Multicomponent Mixtures. Delft: Delft University Press, 2000

    Google Scholar 

  36. Ruggeri T, Simič S. Mixture of gases with multi-temperature: Maxwellian iteration. In: Ruggeri T, Sammartino M, eds. Asymptotic Methods in Nonlinear Wave Phenomena. New Jersey: World Scientific, 2007, 186–194

    Chapter  Google Scholar 

  37. Ieşan D. On a theory of micromorphic elastic solids with microtemperatures. Journal of Thermal Stresses, 2001, 24(8):737–752

    Article  MathSciNet  Google Scholar 

  38. Helmig R. Multiphase Flow and Transport Processes in the Subsurface. Heidelberg: Springer, 1997

    Google Scholar 

  39. Hartge K H, Horn R. Einführung in die Bodenphysik. Stuttgart: Schweizerbart, 1999

    Google Scholar 

  40. Schick P. Ein quantitatives Zwei-Komponenten-Modell der Porenwasser-Bindekräfte in teilgesättigten Böden. Habilitation Thesis. München: Universität der Bundeswehr, 2003

    Google Scholar 

  41. Brooks R H, Corey A T. Hydraulic properties of porous media. In: Hydrology Papers, Vol. 3. Fort Collins: Colorado State University, 1964

    Google Scholar 

  42. van Genuchten M Th. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America, 1980, 44:892–898

    Article  Google Scholar 

  43. Farouki O T. Ground thermal properties. In: Krzewinski T G, Tart R G, eds. Thermal Design Considerations in Frozen Ground Engineering. New York: ASCE, 1985:186–203

    Google Scholar 

  44. Gontaszewska A. Thermophysical Properties of Soils in Vicinity of Zielona Gora in Relation to Soil Frost Depth. Dissertation for the Doctoral Degree. Poznan: University of Poznan, 2006

    Google Scholar 

  45. Chen S X. Thermal conductivity of sands. Heat and Mass Transfer, 2008, 44(10):1241–1246

    Article  Google Scholar 

  46. Mattsson H, Hellström J G I, Lundström S. On internal erosion in embankment dams: a literature survey of the phenomenon and the prospect to model it numerically. Report No. 2008: I14, 2008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina Albers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albers, B., Wilmanski, K. Continuous modeling of soil morphology —thermomechanical behavior of embankment dams. Front. Archit. Civ. Eng. China 5, 11–23 (2011). https://doi.org/10.1007/s11709-010-0081-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-010-0081-7

Keywords

Navigation