Skip to main content
Log in

Strain localization analyses of idealized sands in biaxial tests by distinct element method

  • Research Article
  • Published:
Frontiers of Architecture and Civil Engineering in China Aims and scope Submit manuscript

Abstract

This paper presents a numerical investigation on the strain localization of an idealized sand in biaxial compression tests using the distinct element method (DEM). In addition to the dilatancy and material frictional angle, the principal stress field, and distributions of void ratio, particle velocity, and the averaged pure rotation rate (APR) in the DEM specimen are examined to illustrate the link between microscopic and macroscopic variables in the case of strain localization. The study shows that strain localization of the granular material in the tests proceeds with localizations of void ratio, strain and APR, and distortions of stress field and force chains. In addition, both thickness and inclination of the shear band change with the increasing of axial strain, with the former valued around 10–14 times of mean grain diameter and the later overall described by the Mohr-Coulomb theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiang Mingjing, Shen Zhujiang. State-of-arts review on strain localisation (shear band) of soils. In: Proceedings of Third Chinese Youth Conference on Geomechanics and Geo-Engineering. Nanjing: Hehai University Publication, 1998, 134–149 (in Chinese)

    Google Scholar 

  2. Labuz J, Drescher A. Bifurcations and Instabilities in Geomechanics. Netherlands: Swets & Zeitlinger, 2003

    Book  Google Scholar 

  3. Yin J H, Li X S, Yeung A T, Desai C S. In: The International Workshop on Constitutive Modelling Development, Implementation, Evaluation, and Application, Hong Kong. 2007

  4. Rudnicki J W, Rice J R. Conditions for localization of deformation in pressure-sensitive dilatant materials. Journal of the Mechanics and Physics of Solids, 1975, 23: 371–394

    Article  Google Scholar 

  5. Vardoulakis I. Shear band inclination and shear modulus of sand in biaxial tests. International Journal for Numerical and Analytical Methods in Geomechanics, 1980, 4: 103–119

    Article  MATH  Google Scholar 

  6. Papamichos E, Vardoulakis I. Shear band formation in sand according to non-coaxial plasticity model. Géotechnique, 1995, 45: 649–661

    Article  Google Scholar 

  7. Vardoulakis I, Sulem J. Bifurcation Analysis in Geomechanics. London: Blackie Academic and Professional, 1995

    Google Scholar 

  8. Hicher P Y, Wahyudi H, Tessied D. Micro-structural analysis of strain localization in clay. Computers and Geotechnics, 1994, 16: 205–222

    Article  Google Scholar 

  9. Jiang M J, Shen Z J. Microscopic analysis of shear band in structured clay. Chinese Journal of Geotechnical Engineering, 1998, 20(2): 102–108

    Google Scholar 

  10. Jiang M J, Hongo T, Fukuda M. Pre-failure behaviour of deep-situated Osaka clay. China Ocean Engineering, 1998, 12(4): 453–465

    Google Scholar 

  11. Jiang M J, Peng L C, Zhu H H, Lin Y X, Huang L J. Macro- and micro properties of two natural marine clays in China. China Ocean Engineering, 2009, 23(2): 329–344

    Google Scholar 

  12. Higo Y, Oka F, Jiang M J, Fujita Y. Effects of transport of pore water and material heterogeneity on strain localization of fluid-saturated gradient-dependent viscoplastic geomaterial. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29: 495–523

    Article  MATH  Google Scholar 

  13. Thomas T. Plastic Flow and Fracture in Solids. Elsevier: Academic Press. 1961

    MATH  Google Scholar 

  14. Rice J R, Rudnicki J W. A note on some features of theory of localization of deformation. International Journal of Solids and Structures, 1980, 16: 597–605

    Article  MATH  MathSciNet  Google Scholar 

  15. Vardoulakis I. Equilibrium bifurcation of granular earth bodies. In: Advances in Analysis of Geotechnical Instabilities. Waterloo: University of Waterloo Press, 1978, 65–119

    Google Scholar 

  16. Vardoulakis I. Bifurcation analysis of the triaxial test on sand samples. Acta Mechanica, 1979, 32: 35–54

    Article  MATH  Google Scholar 

  17. Vardoulakis I. Constitutive properties of dry sand observable in the triaxial test. Acta Mechanica, 1981, 38: 219–239

    Article  MATH  Google Scholar 

  18. Vardoulakis I. Rigid granular plasticity model and bifurcation in the triaxial test. Acta Mechanica, 1983, 49: 57–79

    Article  MATH  Google Scholar 

  19. Muhlhaus H B, Vardoulakis I. The thickness of shear bands in granular materials. Geotechnique, 1987, 37: 271–283

    Article  Google Scholar 

  20. Vardoulakis I. Shear banding and liquefaction in granular materials on the basis of Cosserat continuum theory. Archive of Applied Mechanics, 1989, 59(2): 106–113

    Google Scholar 

  21. Bazant Z P. Softening instability: Part I- Localisation into a planar band. Journal of Applied Mechanics, ASME, 1988, 55: 517–522

    Article  Google Scholar 

  22. Arthur J R F, Dunstan T. Rupture layers in granular media. In: Proceedings UTAM Conference on Deformation and Failure of Granular Materials. Rotterdam: Balkema, 1982, 453–459

    Google Scholar 

  23. Drescher A, Vardoulakis I. Geometric softening in triaxial tests on granular material. Geotechnique, 1982, 32(4): 291–303

    Article  Google Scholar 

  24. Lade P V. Localization effects in triaxial tests on sand. In: Proceedings UTAM Conference on Deformation and Failure of Granular Materials. Rotterdam: Balkema, 1982, 461–471

    Google Scholar 

  25. Hettler A, Vardoulakis I. Behaviour of dry sand tested in a large triaxial apparatus. Geotechnique, 1984, 34(2): 183–198

    Article  Google Scholar 

  26. Han C. Localisation of deformation in sand. Dissertation for the Doctoral Degree. University of Minnesota, 1991

  27. Han C, Drescher A. Shear bands in biaxial tests on dry coarse sand. Soils and Foundations, 1993, 33(1): 118–132

    Google Scholar 

  28. Otani J, Mukunoki T, Obara Y. Characterization of Failure and Density Distribution in Soils Using X-Ray CT Scanner. In Proceedings of China-Japan Joint Symposium on Resent Development of Theory & Practice in Geotechnology. Shanghai, 1997, 45–50

  29. Nemat-Nasser S, Okada N. Radiographic and microscopic observation of shear bands in granular materials. Geotechnique, 2001, 51(9): 753–765

    Google Scholar 

  30. Harris W W, Viggiani G, Mooney M A, Finno R J. Use of stereo-photogrammetry to analyze the development of shear bands in sand. Geotechnical Testing Journal, ASTM, 1995, 18(4): 405–420

    Article  Google Scholar 

  31. White D J, Take W A, Bolton M D. Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry. Geotechnique, 2003, 53(7): 619–631

    Google Scholar 

  32. Bazant Z P, Kim S S. Plastic fracturing theory for concrete. Mechanical Engineering, ASCE, 1979, 105: 467–478

    Google Scholar 

  33. Frantziskonis G, Desai C S. Constitutive model with strain softening. International Journal of Solids and Structures, 1987, 23(6): 733–750

    Article  MATH  Google Scholar 

  34. Oritz M, Leroy Y, Needleman A. A finite element method for localised failure analysis. Computer Methods in Applied Mechanics and Engineering, 1987, 61: 189–214

    Article  Google Scholar 

  35. Pietruszczak S, Niu X. On the description of localised deformation. International Journal for Numerical and Analytical Methods in Geomechanics, 1993, 17: 791–805

    Article  MATH  Google Scholar 

  36. Hoeg K. Finite element analysis of strain-softening clay. Journal of the Soil Mechanics and Foundations, ASCE, 1972, 98(SMI): 43–58

    Google Scholar 

  37. Lo K Y, Lee C F. Stress analysis and slope stability in strains-oftening materials. Geotechnique, 1973, 23(1): 1–11

    Article  Google Scholar 

  38. Yatomi C, Yashima A, Izuka A, Samo I. General theory of shear bands formation by a non-coaxial cam-clay model. Soils and Foundations, 1989, 29(3): 41–53

    Google Scholar 

  39. Yatomi C, Yashima A, Izuka A, Samo I. Shear bands formation numerically simulated by a non-coaxial cam-clay model. Soils and Foundations, 1989, 29(4): 1–3

    Google Scholar 

  40. Shuttle D A, Smith I M. Localization in the presence of excess pore water pressure. Computers and Geotechnics, 1990, 8: 87–99

    Article  Google Scholar 

  41. Pijaudier-Cabot G., Bazant A P. Nonlocal damage theory. Journal of Engineering Mechanics, ASCE, 1987, 113: 1512–1533

    Article  Google Scholar 

  42. Bazant A P, Pijaudier-Cabot G, Non-local continuum damage, localisation instability and convergence. Journal of Applied Mechanics, 1988, 55: 287–293

    Article  MATH  Google Scholar 

  43. Bazant A P, Lin F B. Non-local yield limit degradation. International Journal for Numerical Methods in Engineering, 1988, 26: 1805–1823

    Article  MATH  Google Scholar 

  44. de Borst R, Muhlhous H B. Gradient dependent plasticity formulation and algorithmic aspects. International Journal for Numerical Methods in Engineering, 1992, 35: 521–539

    Article  MATH  Google Scholar 

  45. de Borst R. Simulation of strain localization: a reappraisal of the Cosserat continuum. Engineering Computations, 1991, 8: 317–332

    Article  Google Scholar 

  46. de Borst R. A generalization of J2 -flow theory for polar continua. Computer Methods in Applied Mechanics and Engineering, 1993, 103: 347–362

    Article  MATH  Google Scholar 

  47. Steinmann P. Theory and numerics of ductile micropolar elastoplastic damage. International Journal for Numerical Methods in Engineering, 1995, 38: 583–606

    Article  MATH  MathSciNet  Google Scholar 

  48. Tejchman J, Bauer E. Effect of cyclic shearing on shear localisation in granular bodies. Granular Matter, 2004, 5: 201–212

    Article  MATH  Google Scholar 

  49. Tejchman J. Influence of a characteristic length on shear zone formation in hypoplasticity with different enhancements. Computers and Geotechnics, 2004, 31(8): 595–611

    Article  Google Scholar 

  50. Tejchman J, Niemunis A. FE-studies on shear localization in an anisotropic micro-polar hypoplastic granular material. Granular Matter, 2006, 8: 205–220

    Article  Google Scholar 

  51. Cundall P A, Strack O D L. Discrete numerical model for granular assemblies. Geotechnique, 1979, 29: 47–65

    Article  Google Scholar 

  52. Ting JM, Corkum B T, Kauffman C R, Greco C. Discrete numerical model for soil mechanics. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1989, 115(3): 379–398

    Google Scholar 

  53. Rothenburg L, Bathurst R J. Micromechanical features of granular assemblies with planar elliptical particles. Geotechnique, 1992, 42(1): 79–95

    Article  Google Scholar 

  54. Bardet J P. Observations on the effects of particle rotations on the failure of idealized granular materials. Mechanics of Materials, 1994, 18: 159–182

    Article  Google Scholar 

  55. Kuhn M R. Structured deformation in granular materials. Mechanics of Materials, 1999, 31(6): 407–429

    Article  Google Scholar 

  56. Ng T T. Fabric evolution of ellipsoidal arrays with different particle shapes. Journal of Engineering Mechanics, 2001, 127(10): 994–999

    Article  Google Scholar 

  57. Thornton C. Numerical simulation of deviatoric shear deformation of granular media. Geotechnique, 2000, 50(1): 43–53

    Article  Google Scholar 

  58. Jiang M J, Harris D, Yu H S. Kinematic models for non-coaxial granular materials, Part II: Evaluation. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29(7): 663–689

    Article  MATH  Google Scholar 

  59. Kuhn M R, Mitchell J K. New perspectives on soil creep. Journal of Geotechnical and Geoenvironmental Engineering, 1993, 119(3): 507–524

    Google Scholar 

  60. Jiang M J, Leroueil S, Konrad J M. Insight into shear strength functions of unsaturated granulates by DEM analyses. Computer & Geotech, 2004, 31(6): 473–489

    Article  Google Scholar 

  61. Jiang M J, Lerouil S, Konrad J M. Yielding of microstructured geomaterial by DEM analysis. Journal of Engineering Mechanics, ASCE, 2005, 131(11): 1209–1213

    Article  Google Scholar 

  62. Jiang M J, Yu H S. Leroueil S. A simple and efficient approach to capturing bonding effect in naturally-microstructured sands by discrete element method. International Journal for Numerical Methods in Engineering, 2007, 69: 1158–1193

    Article  Google Scholar 

  63. Utili S, Nova R. DEM analysis of bonded granular geomaterials. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(17): 1997–2031

    Article  Google Scholar 

  64. Delenne J Y, El Youssoufi M S, Cherblanc F, Beneet J C. Mechanical behaviour and failure of cohesive granular materials. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28: 1577–1594

    Article  MATH  Google Scholar 

  65. Wang Y H, Leung S C. A particulate scale investigation of cemented sand behaviour. Canadian Geotechnical Journal, 2008, 45: 29–44

    Article  Google Scholar 

  66. Jiang M J, Yu H S, Harris D. Bond rolling resistance and its effect on yielding of bonded granulates by DEM analyses. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(7): 723–761

    Article  Google Scholar 

  67. Wang Y H, Leung S C. Characterization of cemented sand by experimental and numerical investigations. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2008, 134(7): 992–1004

    Article  Google Scholar 

  68. Jiang M J, Yu H S, Harris D. Discrete element modelling of deep penetration in granular soils. Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(4): 335–361

    Article  MATH  Google Scholar 

  69. Jiang M J, Zhu H H, Harris D. Classical and nonclassical kinematic fields of two-dimensional penetration tests on granular ground by discrete element method analyses. Granular Matter, 2008, 10: 439–455

    Article  Google Scholar 

  70. Jiang M J, Harris D, Zhu H H. Future continuum models for granular materials in penetration analyses. Granular Matter, 2007, 9: 97–108

    Article  Google Scholar 

  71. Jiang M J, Yu H S. An interpretation of the internal length in Chang’s couple-stress continuum for bonded granulates. Granular Matter, 2007, 9: 431–437

    Article  Google Scholar 

  72. Bardet J P, Proubet J. A numerical investigation of the structure of persistent shear bands in granular media. Geotechnique, 1991, 41: 599–613

    Article  Google Scholar 

  73. Iwashita K, Oda M. Rolling resistance at contacts in simulation of shear band development by DEM. Journal of Engineering Mechanics, ASCE, 1998, 124: 285–292

    Article  Google Scholar 

  74. Iwashita K, Oda M. Micro-deformation mechanism of shear banding process based on modified distinct element. Powder Technology, 2000, 109: 192–205

    Article  Google Scholar 

  75. Oda M, Iwashita K. Study on couple stress and shear band development in granular media based on numerical analyses. International Journal of Engineering Science, 2000, 38: 1713–40

    Article  Google Scholar 

  76. Jiang M J, Yu H S, Harris D. Kinematic variables bridging discrete and continuum granular mechanics. Mechanics Research Communications, 2006, 33: 651–666

    Article  MathSciNet  MATH  Google Scholar 

  77. Jiang M J, Harris D, Yu H S. Kinematic models for non-coaxial granular materials, Part I: theories. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29(7): 643–661

    Article  MATH  Google Scholar 

  78. Itasca Consulting Group Inc. Particle Flow Code in 2 Dimensions, version 3.1. Minnesota, USA, 2004

  79. Jiang M J, Konrad J M, Leroueil S. An efficient technique for generating homogeneous specimens for DEM studies. Computers and Geotechnics, 2003, 30(7): 579–597

    Article  Google Scholar 

  80. Kuhn M R. A flexible boundary for three-dimensional DEM particle assemblies. Engineering Computations, 1995, 12: 175–183

    Article  MATH  Google Scholar 

  81. Schofield A N, Wroth C P. Critical State Soil Mechanics. London: McGraw-Hill, 1968

    Google Scholar 

  82. Ting J M, Meechum L R, Rowell J D. Effect of particle shape on the strength and deformation mechanism of ellipse-shaped granular assemblages. Computer Engineering, 1995, 12: 99–108

    Article  Google Scholar 

  83. Sawada S, Pradhan T B S. Analysis of anisotropy and particle shape by distinct element method. In: Siriwardane H J, Zaman M M, eds. Computer Methods and Advancements in Geomechanics. Rotterdam: Balkema; 1994, 665–670

    Google Scholar 

  84. Thomas P A, Bray J D. Capturing nonspherical shape of granular media with disk clusters, Journal of Geotechnical and Geoenvironmental Engineering ASCE, 1999, 125: 169–178

    Article  Google Scholar 

  85. Ullidtz P. Modelling of granular materials using the discrete element method. In: Proceedings of 8th International Conference on Asphalt Pavements, University of Washington, 1997, 757–769

  86. Jiang M J, Yu H S, Harris D. A novel discrete model for granular material incorporating rolling resistance. Computers and Geotechnics, 2005, 32(5): 340–357

    Article  Google Scholar 

  87. Jiang M J, Leroueil S, Zhu H H, Yu H S, Konrad J M. Two-dimensional discrete element theory for rough particles. International Journal of Geomechanics, ASCE, 2009, 9(1): 20–33

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingjing Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, M., Zhu, H. & Li, X. Strain localization analyses of idealized sands in biaxial tests by distinct element method. Front. Archit. Civ. Eng. China 4, 208–222 (2010). https://doi.org/10.1007/s11709-010-0025-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-010-0025-2

Keywords

Navigation