Skip to main content
Log in

Recent progress in Prussian blue electrode for electrochromic devices

  • Review Article
  • Special Issue: Electrochemical Energy Storage and Conversion
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

Great progress has been made in the electrochromic (EC) technology with potential applications in various fields. As one of the most promising EC materials, Prussian blue (PB) has attracted great attention due to its excellent EC performance, such as low cost, easy synthesis, rich color states, chemical stability, suitable redox potential, and fast color-switching kinetics. This review summarizes the recent progress in PB electrodes and devices, including several typical preparation techniques of PB electrodes, as well as the recent key strategies for enhancing EC performance of PB electrodes. Specifically, PB-based electrochromic devices (ECDs) have been widely used in various fields, such as smart windows, electrochromic energy storage devices (EESDs), wearable electronics, smart displays, military camouflage, and other fields. Several opportunities and obstacles are suggested for advancing the development of PB-based ECDs. This comprehensive review is expected to offer valuable insights for the design and fabrication of sophisticated PB-based ECDs, enabling their practical integration into real-world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lang A W, Li Y, De Keersmaecker M, et al. Transparent wood smart windows: Polymer electrochromic devices based on poly(3,4-ethylenedioxythiophene): Poly(styrene sulfonate) electrodes. ChemSusChem, 2018, 11(5): 854–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Davy N C, Sezen-Edmonds M, Gao J, et al. Pairing of near-ultraviolet solar cells with electrochromic windows for smart management of the solar spectrum. Nature Energy, 2017, 2(8): 17104

    Article  ADS  CAS  Google Scholar 

  3. Zhou Y, Dong X, Mi Y, et al. Hydrogel smart windows. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(20): 10007–10025

    CAS  Google Scholar 

  4. Wang K, Wu H, Meng Y, et al. Integrated energy storage and electrochromic function in one flexible device: An energy storage smart window. Energy & Environmental Science, 2012, 5(8): 8384–8389

    Article  CAS  Google Scholar 

  5. Huang Y, Zhu M, Huang Y, et al. Multifunctional energy storage and conversion devices. Advanced Materials, 2016, 28(38): 8344–8364

    Article  CAS  PubMed  Google Scholar 

  6. Wang J, Zhang L, Yu L, et al. A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications. Nature Communications, 2014, 5(1): 4921

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Liangmiao Z, Yi D, Fang X, et al. Two birds with one stone: A novel thermochromic cellulose hydrogel as electrolyte for fabricating electric-/thermal-dual-responsive smart windows. Chemical Engineering Journal, 2022, 455(2): 140849

    Google Scholar 

  8. Dong Sik K, Yong Hui L, Jung Wook K, et al. A stretchable array of high-performance electrochromic devices for displaying skin-attached multi-sensor signals. Chemical Engineering Journal, 2021, 429: 132289

    Google Scholar 

  9. Cai G, Wang J, Lee P S. Next-generation multifunctional electrochromic devices. Accounts of Chemical Research, 2016, 49(8): 1469–1476

    Article  CAS  PubMed  Google Scholar 

  10. Lei L, Chen L, Mengying W, et al. Low self-discharge all-solid-state electrochromic asymmetric supercapacitors at wide temperature toward efficient energy storage. Chemical Engineering Journal, 2022, 456: 141022

    Google Scholar 

  11. Ware M. Prussian blue: Artists’ pigment and chemists’ sponge. Journal of Chemical Education, 2008, 85(5): 612

    Article  ADS  CAS  Google Scholar 

  12. Ludi A. Prussian blue, an inorganic evergreen. Journal of Chemical Education, 1981, 58(12): 1013

    Article  ADS  CAS  Google Scholar 

  13. Ellis D, Eckhoff M, Neff V D. Electrochromism in the mixed-valence hexacyanides. 1. Voltammetric and spectral studies of the oxidation and reduction of thin films of Prussian blue. Journal of Physical Chemistry, 1981, 85(9): 1225–1231

    Article  CAS  Google Scholar 

  14. Neff V D. Electrochemical oxidation and reduction of thin films of Prussian blue. Journal of the Electrochemical Society, 1978, 125(6): 886–887

    Article  ADS  CAS  Google Scholar 

  15. Itaya K, Ataka T, Toshima S. Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes. Journal of the American Chemical Society, 1982, 104(18): 4767–4772

    Article  CAS  Google Scholar 

  16. Itaya K, Akahoshi H, Toshima S. Electrochemistry of Prussian blue modified electrodes: An electrochemical preparation method. Journal of the Electrochemical Society, 1982, 129(7): 1498–1500

    Article  ADS  CAS  Google Scholar 

  17. Su D, Cortie M, Fan H, et al. Prussian blue nanocubes with an open framework structure coated with PEDOT as high-capacity cathodes for lithium–sulfur batteries. Advanced Materials, 2017, 29(48): 1700587

    Article  Google Scholar 

  18. Wang R Y, Wessells C D, Huggins R A, et al. Highly reversible open framework nanoscale electrodes for divalent ion batteries. Nano Letters, 2013, 13(11): 5748–5752

    Article  ADS  CAS  PubMed  Google Scholar 

  19. DeLongchamp D M, Hammond P T. High-contrast electrochromism and controllable dissolution of assembled Prussian blue/polymer nanocomposites. Advanced Functional Materials, 2004, 14(3): 224–232

    Article  CAS  Google Scholar 

  20. Jiao Z, Wang J, Ke L, et al. Electrochromic properties of nanostructured tungsten trioxide (hydrate) films and their applications in a complementary electrochromic device. Electrochimica Acta, 2012, 63: 153–160

    Article  CAS  Google Scholar 

  21. Song J, Huang B, Liu S, et al. Facile preparation of Prussian blue electrochromic films for smart-supercapattery via an in-situ replacement reaction. Solar Energy, 2022, 232: 275–282

    Article  ADS  CAS  Google Scholar 

  22. Li Z, Zhao Y, Xiao Y, et al. A feasible strategy of Prussian blue reflective electrochromic devices capable of reversible switching between sand-yellow and leaf-green. Materials Letters, 2022, 307: 130969

    Article  CAS  Google Scholar 

  23. Li Z, Tang Y, Zhou K, et al. Improving electrochromic cycle life of Prussian blue by acid addition to the electrolyte. Materials, 2018, 12(1): 28

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  24. Stilwell D E, Park K H, Miles M H. Electrochemical studies of the factors influencing the cycle stability of Prussian blue films. Journal of Applied Electrochemistry, 1992, 22(4): 325–331

    Article  CAS  Google Scholar 

  25. Wang K, Zhang H, Chen G, et al. Long-term-stable WO3-PB complementary electrochromic devices. Journal of Alloys and Compounds, 2021, 861: 158534

    Article  CAS  Google Scholar 

  26. Chaudhary A, Pathak D K, Ghosh T, et al. Prussian blue-cobalt oxide double layer for efficient all-inorganic multicolor electrochromic device. ACS Applied Electronic Materials, 2020, 2(6): 1768–1773

    Article  CAS  Google Scholar 

  27. Kim D S, Park H, Hong S Y, et al. Low power stretchable active-matrix red, green, blue (RGB) electrochromic device array of poly(3-methylthiophene)/Prussian blue. Applied Surface Science, 2019, 471: 300–308

    Article  ADS  CAS  Google Scholar 

  28. Fan M S, Kao S Y, Chang T H, et al. A high contrast solid-state electrochromic device based on nano-structural Prussian blue and poly(butyl viologen) thin films. Solar Energy Materials and Solar Cells, 2016, 145(1): 35–41

    Article  CAS  Google Scholar 

  29. Huang B, Song J, Zhong J, et al. Prolonging lifespan of Prussian blue electrochromic films by an acid-free bulky-anion potassium organic electrolyte. Chemical Engineering Journal, 2022, 449: 137850

    Article  CAS  Google Scholar 

  30. Kim S, Choi J. Photoelectrochemical anodization for the preparation of a thick tungsten oxide film. Electrochemistry Communications, 2012, 17: 10–13

    Article  CAS  Google Scholar 

  31. Fang Y, Sun X, Cao H. Influence of PEG additive and annealing temperature on structural and electrochromic properties of solgel derived WO3 films. Journal of Sol-Gel Science and Technology, 2011, 59(1): 145–152

    Article  CAS  Google Scholar 

  32. Cheng K C, Chen F R, Kai J J. Electrochromic property of nano-composite Prussian blue based thin film. Electrochimica Acta, 2007, 52(9): 3330–3335

    Article  CAS  Google Scholar 

  33. Chen Y, Bi Z, Li X, et al. High-coloration efficiency electrochromic device based on novel porous TiO2@Prussian blue core-shell nanostructures. Electrochimica Acta, 2017, 224: 534–540

    Article  CAS  Google Scholar 

  34. Xu H, Gong L, Zhou S, et al. Enhancing the electrochromic stability of Prussian blue based on TiO2 nanorod arrays. New Journal of Chemistry, 2020, 44(6): 2236–2240

    Article  CAS  Google Scholar 

  35. Xu M, Wang S, Zhou S, et al. Fast-switching speed and ultralong lifespan Au/Prussian blue electrochromic film for iris devices applications. Advanced Materials Interfaces, 2023, 10(7): 2201765

    Article  CAS  Google Scholar 

  36. Kumar S S, Joseph J, Phani K L. Novel method for deposition of gold-Prussian blue nanocomposite films induced by electrochemically formed gold nanoparticles: Characterization and application to electrocatalysis. Chemistry of Materials, 2007, 19(19): 4722–4730

    Article  CAS  Google Scholar 

  37. Wang Y, Gong Z, Zeng Y, et al. High-properties electrochromic device based on TiO2@graphene/Prussian blue core-shell nanostructures. Chemical Engineering Journal, 2022, 431: 134066

    Article  CAS  Google Scholar 

  38. Xu M, Wang S, Zhou S, et al. Construction of TiO2@C@Prussian blue core-shell nanorod arrays for enhanced electrochromic switching speed and cycle stability. Journal of Alloys and Compounds, 2022, 908: 164410

    Article  CAS  Google Scholar 

  39. Tang D, Wang J, Liu X A, et al. Low-spin Fe redox-based Prussian blue with excellent selective dual-band electrochromic modulation and energy-saving applications. Journal of Colloid and Interface Science, 2023, 636: 351–362

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Nossol E, Zarbin A J G. A simple and innovative route to prepare a novel carbon nanotube/Prussian blue electrode and its utilization as a highly sensitive H2O2 amperometric sensor. Advanced Functional Materials, 2009, 19(24): 3980–3995

    Article  CAS  Google Scholar 

  41. Ji X, Ren J, Ni R, et al. A stable and controllable Prussian blue layer electrodeposited on self-assembled monolayers for constructing highly sensitive glucose biosensor. Analyst, 2010, 135(8): 2092–2098

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Chi Q, Dong S. Amperometric biosensors based on the immobilization of oxidases in a Prussian blue film by electrochemical codeposition. Analytica Chimica Acta, 1995, 310(3): 429–436

    Article  CAS  Google Scholar 

  43. Ho K C, Chen C Y, Hsu H C, et al. Amperometric detection of morphine at a Prussian blue-modified indium tin oxide electrode. Biosensors & Bioelectronics, 2004, 20(1): 3–8

    Article  CAS  Google Scholar 

  44. Zhai C, Sun X, Zhao W, et al. Acetylcholinesterase biosensor based on chitosan/Prussian blue/multiwall carbon nanotubes/hollow gold nanospheres nanocomposite film by one-step electrodeposition. Biosensors & Bioelectronics, 2013, 42: 124–130

    Article  CAS  Google Scholar 

  45. Song Y, Zhang M, Wang L, et al. A novel biosensor based on acetylecholinesterase/Prussian blue-chitosan modified electrode for detection of carbaryl pesticides. Electrochimica Acta, 2011, 56(21): 7267–7271

    Article  CAS  Google Scholar 

  46. Karyakin A A, Karyakina E E, Gorton L. Amperometric biosensor for glutamate using Prussian blue-based “artificial peroxidase” as a transducer for hydrogen peroxide. Analytical Chemistry, 2000, 72(7): 1720–1723

    Article  CAS  PubMed  Google Scholar 

  47. Isfahani V B, Memarian N, Dizaji H R, et al. The physical and electrochromic properties of Prussian blue thin films electrodeposited on ITO electrodes. Electrochimica Acta, 2019, 304: 282–291

    Article  CAS  Google Scholar 

  48. Fu Z, Wei Y, Liu W, et al. Investigation of electrochromic device based on multi-step electrodeposited PB films. Ionics, 2021, 27(10): 4419–4427

    Article  CAS  Google Scholar 

  49. Sekhavat M S, Ghodsi F E. Improving the electrochromic performance of Prussian blue (PB) thin films by using an innovative electrothermophoresis method. Journal of Materials Research, 2023, 38(10): 2852–2862

    Article  ADS  CAS  Google Scholar 

  50. Lopes L C, Husmann S, Zarbin A J G. Chemically synthesized graphene as a precursor to Prussian blue-based nanocomposite: A multifunctional material for transparent aqueous K-ion battery or electrochromic device. Electrochimica Acta, 2020, 345: 136199

    Article  CAS  Google Scholar 

  51. Ojha M, Pal M, Deepa M. Variable-tint electrochromic supercapacitor with a benzyl hexenyl viologen—Prussian blue architecture and ultralong cycling life. ACS Applied Electronic Materials, 2023, 5(4): 2401–2413

    Article  CAS  Google Scholar 

  52. Pham N S, Nguyen L T, Nguyen H T, et al. A complementary electrochromic device based on Prussian blue and tungsten trioxide: The influence of switching time operation on high performance and long-term stability. Materials Letters, 2023, 343: 134356

    Article  CAS  Google Scholar 

  53. Pham N S, Seo Y H, Park E, et al. Implementation of high-performance electrochromic device based on all-solution-fabricated Prussian blue and tungsten trioxide thin film. Electrochimica Acta, 2020, 353: 136446

    Article  CAS  Google Scholar 

  54. Zhang W, Li H, Elezzabi A Y. A dual-mode electrochromic platform integrating zinc anode-based and rocking-chair electrochromic devices. Advanced Functional Materials, 2023, 33(24): 2300155

    Article  CAS  Google Scholar 

  55. Ding Y, Wang M, Mei Z, et al. Flexible inorganic all-solid-state electrochromic devices toward visual energy storage and two-dimensional color tunability. ACS Applied Materials & Interfaces, 2023, 15(12): 15646–15656

    Article  CAS  Google Scholar 

  56. Su Y, Wang Y, Lu Z, et al. A dual-function device with high coloring efficiency based on a highly stable electrochromic nanocomposite material. Chemical Engineering Journal, 2023, 456: 141075

    Article  CAS  Google Scholar 

  57. Ma Q, Chen J, Zhang H, et al. Dual-function self-powered electrochromic batteries with energy storage and display enabled by potential difference. ACS Energy Letters, 2023, 8(1): 306–313

    Article  CAS  Google Scholar 

  58. Chu J, Li X, Cheng Y, et al. Electrochromic properties of Prussian blue nanocube film directly grown on FTO substrates by hydrothermal method. Materials Letters, 2020, 258: 126782

    Article  CAS  Google Scholar 

  59. Qian J, Ma D, Xu Z, et al. Electrochromic properties of hydrothermally grown Prussian blue film and device. Solar Energy Materials and Solar Cells, 2018, 177: 9–14

    Article  CAS  Google Scholar 

  60. Yang Y, Peng Y, Jian Z, et al. Novel high-performance and low-cost electrochromic Prussian white film. ACS Applied Materials & Interfaces, 2022, 14(6): 8157–8162

    Article  CAS  Google Scholar 

  61. Hong S F, Chen L C. Nano-Prussian blue analogue/PEDOT: PSS composites for electrochromic windows. Solar Energy Materials and Solar Cells, 2012, 104: 64–74

    Article  CAS  Google Scholar 

  62. Shiozaki H, Kawamoto T, Tanaka H, et al. Electrochromic thin film fabricated using a water-dispersible ink of Prussian blue nanoparticles. Japanese Journal of Applied Physics, 2008, 47(2): 1242–1244

    Article  ADS  CAS  Google Scholar 

  63. Jeong C Y, Kubota T, Tajima K, et al. Complementary electrochromic devices based on acrylic substrates for smart window applications in aircrafts. Materials Chemistry and Physics, 2022, 277: 125460

    Article  CAS  Google Scholar 

  64. Tajima K, Watanabe H, Nishino M, et al. Green fabrication of a complementary electrochromic device using water-based ink containing nanoparticles of WO3 and Prussian blue. RSC Advances, 2020, 10(5): 2562–2565

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jeong C Y, Kubota T, Tajima K. Flexible electrochromic devices based on tungsten oxide and Prussian blue nanoparticles for automobile applications. RSC Advances, 2021, 11(46): 28614–28620

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shen X, Wu S, Liu Y, et al. Morphology syntheses and properties of well-defined Prussian blue nanocrystals by a facile solution approach. Journal of Colloid and Interface Science, 2009, 329(1): 188–195

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Ming H, Torad N L K, Chiang Y D, et al. Size- and shape-controlled synthesis of Prussian blue nanoparticles by a polyvinylpyrrolidone-assisted crystallization process. CrystEngComm, 2012, 14(10): 3387–3396

    Article  CAS  Google Scholar 

  68. Ishizaki M, Kanaizuka K, Abe M, et al. Preparation of electrochromic Prussian blue nanoparticles dispersible into various solvents for realisation of printed electronics. Green Chemistry, 2012, 14(5): 1537–1544

    Article  CAS  Google Scholar 

  69. Wang J Y, Wang M C, Jan D J. Synthesis of poly(methyl methacrylate)-succinonitrile composite polymer electrolyte and its application for flexible electrochromic devices. Solar Energy Materials and Solar Cells, 2017, 160: 476–483

    Article  CAS  Google Scholar 

  70. Liao T C, Chen W H, Liao H Y, et al. Multicolor electrochromic thin films and devices based on the Prussian blue family nanoparticles. Solar Energy Materials and Solar Cells, 2016, 145(1): 26–34

    Article  CAS  Google Scholar 

  71. Ding Y, Sun H, Li Z, et al. Galvanic-driven deposition of large-area Prussian blue films for flexible battery-type electrochromic devices. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2023, 11(6): 2868–2875

    CAS  Google Scholar 

  72. Demiri S, Najdoski M, Velevska J. A simple chemical method for deposition of electrochromic Prussian blue thin films. Materials Research Bulletin, 2011, 46(12): 2484–2488

    Article  CAS  Google Scholar 

  73. Elshorbagy M H, Ramadan R, Abdelhady K. Preparation and characterization of spray-deposited efficient Prussian blue electrochromic thin film. Optik, 2017, 129: 130–139

    Article  ADS  CAS  Google Scholar 

  74. Kim J H, Park S, Ahn J, et al. Meniscus-guided micro-printing of Prussian blue for smart electrochromic display. Advanced Science, 2023, 10(3): 2205588

    Article  CAS  PubMed  Google Scholar 

  75. Wojdel J C. First principles calculations on the influence of water-filled cavities on the electronic structure of Prussian blue. Journal of Molecular Modeling, 2009, 15(6): 567–572

    Article  CAS  PubMed  Google Scholar 

  76. Liu X, Zhou A, Dou Y, et al. Ultrafast switching of an electrochromic device based on layered double hydroxide/Prussian blue multilayered films. Nanoscale, 2015, 7(40): 17088–17095

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Cong S, Tian Y, Li Q, et al. Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications. Advanced Materials, 2014, 26(25): 4260–4267

    Article  CAS  PubMed  Google Scholar 

  78. Ko J H, Yeo S, Park J H, et al. Graphene-based electrochromic systems: The case of Prussian blue nanoparticles on transparent graphene film. Chemical Communications, 2012, 48(32): 3884–3886

    Article  CAS  PubMed  Google Scholar 

  79. Nossol E, Zarbin A J G. Electrochromic properties of carbon nanotubes/Prussian blue nanocomposite films. Solar Energy Materials and Solar Cells, 2013, 109: 40–46

    Article  CAS  Google Scholar 

  80. Talagaeva N V, Zolotukhina E V, Bezverkhyy I, et al. Stability of Prussian blue–polypyrrole (PB/PPy) composite films synthesized via one-step redox-reaction procedure. Journal of Solid State Electrochemistry, 2015, 19(9): 2701–2709

    Article  CAS  Google Scholar 

  81. DeLongchamp D M, Hammond P T. Multiple-color electrochromism from layer-by-layer-assembled polyaniline/Prussian blue nanocomposite thin films. Chemistry of Materials, 2004, 16(23): 4799–4805

    Article  CAS  Google Scholar 

  82. Liu Z, Yang J, Leftheriotis G, et al. A solar-powered multifunctional and multimode electrochromic smart window based on WO3/Prussian blue complementary structure. Sustainable Materials and Technologies, 2022, 31: e00372

    Article  CAS  Google Scholar 

  83. Cai H, Chen Z, Guo S, et al. Polyacrylamide gel electrolyte for high-performance quasi-solid-state electrochromic devices. Solar Energy Materials and Solar Cells, 2023, 256: 112310

    Article  CAS  Google Scholar 

  84. Xu G, Han Y, Li X, et al. A hydrogel electrolyte based on hydroxypropyl methylcellulose modified polyacrylamine for efficient electrochromic energy storage devices. European Polymer Journal, 2023, 186: 111856

    Article  CAS  Google Scholar 

  85. Yue Y, Li H, Li K, et al. High-performance complementary electrochromic device based on WO3 0.33H2O/PEDOT and Prussian blue electrodes. Journal of Physics and Chemistry of Solids, 2017, 110: 284–289

    Article  ADS  CAS  Google Scholar 

  86. Sun B, Liu Z, Li W, et al. A high-performance electrochromic battery based on complementary Prussian white/Li4Ti5O12 thin film electrodes. Solar Energy Materials and Solar Cells, 2021, 231: 111314

    Article  CAS  Google Scholar 

  87. Chen K C, Hsu C Y, Hu C W, et al. A complementary electrochromic device based on Prussian blue and poly(ProDOT-Et2) with high contrast and high coloration efficiency. Solar Energy Materials and Solar Cells, 2011, 95(8): 2238–2245

    Article  CAS  Google Scholar 

  88. Chaudhary A, Pathak D K, Tanwar M, et al. Prussian blue-viologen inorganic–organic hybrid blend for improved electrochromic performance. ACS Applied Electronic Materials, 2019, 1(6): 892–899

    Article  CAS  Google Scholar 

  89. Bi Z, Li X, Chen Y, et al. Large-scale multifunctional electrochromic-energy storage device based on tungsten trioxide monohydrate nanosheets and Prussian white. ACS Applied Materials & Interfaces, 2017, 9(35): 29872–29880

    Article  CAS  Google Scholar 

  90. Assis L M N, Sabadini R C, Santos L P, et al. Electrochromic device with Prussian blue and HPC-based electrolyte. Electrochimica Acta, 2015, 182: 878–883

    Article  CAS  Google Scholar 

  91. Lu H C, Kao S Y, Chang T H, et al. An electrochromic device based on Prussian blue, self-immobilized vinyl benzyl viologen, and ferrocene. Solar Energy Materials and Solar Cells, 2016, 147: 75–84

    Article  CAS  Google Scholar 

  92. Cai G, Cui M, Kumar V, et al. Ultra large optical modulation of electrochromic porous WO3 film and the local monitoring of redox activity. Chemical Science, 2016, 7(2): 1373–1382

    Article  CAS  PubMed  Google Scholar 

  93. Weng D, Li M, Zheng J, et al. High-performance complementary electrochromic device based on surface-confined tungsten oxide and solution-phase N-mhthyl-phenothiazine with full spectrum absorption. Journal of Materials Science, 2017, 52(1): 86–95

    Article  ADS  CAS  Google Scholar 

  94. Lin C F, Hsu C Y, Lo H C, et al. A complementary electrochromic system based on a Prussian blue thin film and a heptyl viologen solution. Solar Energy Materials and Solar Cells, 2011, 95(11): 3074–3080

    Article  CAS  Google Scholar 

  95. Chen K C, Hsu C Y, Hu C W, et al. A complementary electrochromic device based on Prussian blue and poly(ProDOT-Et2) with high contrast and high coloration efficiency. Solar Energy Materials and Solar Cells, 2011, 95(8): 2238–3080

    Article  CAS  Google Scholar 

  96. Liu B J W, Zheng J, Wang J L, et al. Ultrathin W18O49 nanowire assemblies for electrochromic devices. Nano Letters, 2013, 13(8): 3589–3593

    Article  ADS  CAS  PubMed  Google Scholar 

  97. Jiao Z, Wang J, Ke L, et al. Electrochromic properties of nanostructured tungsten trioxide (hydrate) films and their applications in a complementary electrochromic device. Electrochimica Acta, 2012, 63: 153–160

    Article  CAS  Google Scholar 

  98. Ahmadian-Alam L, Jahangiri F, Mahdavi H. Fabrication and assessment of an electrochromic and radar-absorbent dual device based on the new smart polythiophene-based/RGO/Fe3O4 ternary nanocomposite. Chemical Engineering Journal, 2021, 422: 130159

    Article  CAS  Google Scholar 

  99. Wen R T, Granqvist C G, Niklasson G A. Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films. Nature Materials, 2015, 14(10): 996–1001

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mjejri I, Rougier A. Color switching in V3O7·H2O films cycled in Li and Na based electrolytes: Novel vanadium oxide based electrochromic materials. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2020, 8(11): 3631–3638

    Article  CAS  Google Scholar 

  101. Wang Y, Wang S, Wang X, et al. A multicolour bistable electronic shelf label based on intramolecular proton-coupled electron transfer. Nature Materials, 2019, 18(12): 1335–1342

    Article  ADS  CAS  PubMed  Google Scholar 

  102. Zhang D, Wang J, Tong Z, et al. Bioinspired dynamically switchable PANI/PS-b-P2VP thin films for multicolored electrochromic displays with long-term durability. Advanced Functional Materials, 2021, 31(45): 2106577

    Article  CAS  Google Scholar 

  103. Zhou K, Wang H, Jiu J, et al. Polyaniline films with modified nanostructure for bifunctional flexible multicolor electrochromic and supercapacitor applications. Chemical Engineering Journal, 2018, 345: 290–299

    Article  CAS  Google Scholar 

  104. Ding Y, Wang M, Mei Z, et al. Novel Prussian white@MnO2-based inorganic electrochromic energy storage devices with integrated flexibility, multicolor, and long life. ACS Applied Materials & Interfaces, 2022, 14(43): 48833–48843

    Article  CAS  Google Scholar 

  105. Li H, Zhang W, Elezzabi A Y. Transparent zinc-mesh electrodes for solar-charging electrochromic windows. Advanced Materials, 2020, 32(43): 2003574

    Article  CAS  Google Scholar 

  106. Li J, Yang P, Li X, et al. Ultrathin smart energy-storage devices for skin-interfaced wearable electronics. ACS Energy Letters, 2023, 8(1): 1–8

    Article  Google Scholar 

  107. Kim Y, Han M, Kim J, et al. Electrochromic capacitive windows based on all conjugated polymers for a dual function smart window. Energy & Environmental Science, 2018, 11(8): 2124–2133

    Article  CAS  Google Scholar 

  108. Li H, Elezzabi A Y. Simultaneously enabling dynamic transparency control and electrical energy storage via electrochromism. Nanoscale Horizons, 2020, 5(4): 691–695

    Article  ADS  CAS  PubMed  Google Scholar 

  109. Zhang H, Yu Y, Zhang L, et al. Self-powered fluorescence display devices based on a fast self-charging/recharging battery (Mg/Prussian blue). Chemical Science, 2016, 7(11): 6721–6727

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  110. Nanda O, Gupta N, Grover R, et al. Self-powered electrochromic window using green electrolyte. AIP Advances, 2018, 8(9): 095117

    Article  ADS  Google Scholar 

  111. Wang J, Zhang L, Yu L, et al. A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications. Nature Communications, 2014, 5(1): 4921

    Article  ADS  CAS  PubMed  Google Scholar 

  112. Wang B, Cui M, Gao Y, et al. A long-life battery-type electrochromic window with remarkable energy storage ability. Solar RRL, 2020, 4(3): 1900425

    Article  CAS  Google Scholar 

  113. Zhang H, Feng J, Sun F, et al. Self-driven Ni-based electrochromic devices for energy-efficient smart windows. Advanced Materials Technologies, 2023, 8(8): 2201688

    Article  CAS  Google Scholar 

  114. Luo Y, Jin H, Lu Y, et al. Potential gradient-driven fast-switching electrochromic device. ACS Energy Letters, 2022, 7(6): 1880–1887

    Article  CAS  Google Scholar 

  115. Zhao F, Zhao J, Zhang Y, et al. Self-powered quasi-solid-state electrochromic devices for optical information encryption. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2021, 9(25): 7958–7966

    Article  CAS  Google Scholar 

  116. Rathod P V, Puguan J M C, Kim H. Self-bleaching dual responsive poly(ionic liquid) with optical bistability toward climate-adaptable solar modulation. Chemical Engineering Journal, 2021, 422: 130065

    Article  CAS  Google Scholar 

  117. Watanabe Y, Nagashima T, Nakamura K, et al. Continuous-tone images obtained using three primary-color electrochromic cells containing gel electrolyte. Solar Energy Materials and Solar Cells, 2012, 104: 140–145

    Article  CAS  Google Scholar 

  118. Kobayashi N, Miura S, Nishimura M, et al. Organic electrochromism for a new color electronic paper. Solar Energy Materials and Solar Cells, 2008, 92(2): 136–139

    Article  CAS  Google Scholar 

  119. Yu H, Shao S, Yan L, et al. Side-chain engineering of green color electrochromic polymer materials: Toward adaptive camouflage application. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2016, 4(12): 2269–2273

    Article  CAS  Google Scholar 

  120. Tajima K, Jeong C Y, Kubota T, et al. Mass-producible slit coating for large-area electrochromic devices. Solar Energy Materials and Solar Cells, 2021, 232: 111361

    Article  CAS  Google Scholar 

  121. Macher S, Schott M, Dontigny M, et al. Large-area electrochromic devices on flexible polymer substrates with high optical contrast and enhanced cycling stability. Advanced Materials Technologies, 2021, 6(2): 2000836

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Beijing Municipality, China (No. 2222045) and Beijing Nova Program, China (No. 20220484234).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Yan or Hao Wang.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, W., Gong, H. et al. Recent progress in Prussian blue electrode for electrochromic devices. Front. Energy (2024). https://doi.org/10.1007/s11708-024-0927-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11708-024-0927-7

Keywords

Navigation