Skip to main content
Log in

Advances in doping strategies for sodium transition metal oxides cathodes: A review

  • Review Article
  • Special Issue: Electrochemical Energy Storage and Conversion
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

The electrochemistry of cathode materials for sodium-ion batteries differs significantly from lithium-ion batteries and offers distinct advantages. Overall, the progress of commercializing sodium-ion batteries is currently impeded by the inherent inefficiencies exhibited by these cathode materials, which include insufficient conductivity, slow kinetics, and substantial volume changes throughout the process of intercalation and deintercalation cycles. Consequently, numerous methodologies have been utilized to tackle these challenges, encompassing structural modulation, surface modification, and elemental doping. This paper aims to highlight fundamental principles and strategies for the development of sodium transition metal oxide cathodes. Specifically, it emphasizes the role of various elemental doping techniques in initiating anionic redox reactions, improving cathode stability, and enhancing the operational voltage of these cathodes, aiming to provide readers with novel perspectives on the design of sodium metal oxide cathodes through the doping approach, as well as address the current obstacles that can be overcome/alleviated through these dopant strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Nishi Y. Lithium-ion secondary batteries: Past 10 years and the future. Journal of Power Sources, 2001, 100(1–2): 101–106

    Article  ADS  CAS  Google Scholar 

  2. Qian L, Durairaj S, Prins S, Chen A. Nanomaterials based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosensors and Bioelectronics, 2021, 175: 112836

    Article  CAS  PubMed  Google Scholar 

  3. Deng D. Li-ion batteries: Basics, progress, and challenges. Energy Science & Engineering, 2015, 3(5): 385–418

    Article  Google Scholar 

  4. Etacheri V, Marom R, Elazari R, et al. Challenges in the development of advanced Li-ion batteries: A review. Energy & Environmental Science, 2011, 4(9): 3243

    Article  CAS  Google Scholar 

  5. Abraham K M. How comparable are sodium-ion batteries to lithium-ion counterparts?. ACS Energy Letters, 2020, 5(11): 3544–3547

    Article  CAS  Google Scholar 

  6. Yabuuchi N, Kubota K, Dahbi M, et al. Research development on sodium-ion batteries. Chemical Reviews, 2014, 114(23): 11636–11682

    Article  CAS  PubMed  Google Scholar 

  7. Mariyappan S, Wang Q, Tarascon J M. Will sodium layered oxides ever be competitive for sodium-ion battery applications?. Journal of the Electrochemical Society, 2018, 165(16): A3714–A3722

    Article  ADS  CAS  Google Scholar 

  8. Kubota K, Komaba S. Review—Practical issues and future perspective for Na-ion batteries. Journal of the Electrochemical Society, 2015, 162(14): A2538–A2550

    Article  CAS  Google Scholar 

  9. Molenda J, Delmas C, Hagenmuller P. Electronic and electrochemical properties of NaxCoO2−y cathode. Solid State Ionics, 1983, 9–10: 431–435

    Article  Google Scholar 

  10. Wang Y, Xiao R, Hu YS, et al. P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries. Nature Communications, 2015, 6(1): 6954

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Liu Q, Hu Z, Li W, et al. Sodium transition metal oxides: The preferred cathode choice for future sodium-ion batteries?. Energy & Environmental Science, 2021, 14(1): 158–179

    Article  ADS  CAS  Google Scholar 

  12. Jin T, Wang P, Wang Q, et al. Realizing complete solid-solution reaction in high sodium content P2-type cathode for high-performance sodium-ion batteries. Angewandte Chemie International Edition, 2020, 59(34): 14511–14516

    Article  CAS  PubMed  Google Scholar 

  13. Yang J, Tang M, Liu H, et al. O3-type layered Ni-rich oxide: A high-capacity and superior-rate cathode for sodium-ion batteries. Small, 2019, 15(52): 1905311

    Article  CAS  Google Scholar 

  14. Qian L, Thiruppathi A R, van der Zalm J, et al. Graphene oxide-based nanomaterials for the electrochemical sensing of isoniazid. ACS Applied Nano Materials, 2021, 4(4): 3696–3706

    Article  CAS  Google Scholar 

  15. Wang P F, Yao H R, Liu X Y, et al. Na+/vacancy disordering promises high-rate Na-ion batteries. Science Advances, 2018, 4(3): eaar6018

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  16. Clément R J, Bruce P G, Grey C P. Review—Manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials. Journal of the Electrochemical Society, 2015, 162(14): A2589–A2604

    Article  Google Scholar 

  17. Xu J, Lee D H, Clément R J, et al. Identifying the critical role of Li substitution in P2−Nax[LiyNizMn1−yz]O2 (0 < x, y, z < 1) intercalation cathode materials for high-energy Na-ion batteries. Chemistry of Materials, 2014, 26(2): 1260–1269

    Article  CAS  Google Scholar 

  18. Ghosh A, Senthilkumar B, Ghosh S, et al. Exploring optimal Li-ion substitution for high Na-content P2−Na0.67+a[LixNi0.33−y Mn0.67−z]O2 cathodes for sodium-ion batteries. Journal of the Electrochemical Society, 2023, 170(3): 030538

    Article  ADS  CAS  Google Scholar 

  19. Zheng S, Zhong G, McDonald M J, et al. Exploring the working mechanism of Li+ in O3-type NaLi0.1Ni0.35Mn0.55O2 cathode materials for rechargeable Na-ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(23): 9054–9062

    Article  CAS  Google Scholar 

  20. Billaud J, Singh G, Armstrong A R, et al. Na0.67Mn1−xMgxO2 (0 ⩽ x ⩽ 0.2): A high capacity cathode for sodium-ion batteries. Energy & Environmental Science, 2014, 7(4): 1387–1391

    Article  CAS  Google Scholar 

  21. Wang P F, You Y, Yin Y X, et al. Suppressing the P2−O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries. Angewandte Chemie International Edition, 2016, 55(26): 7445–7449

    Article  CAS  PubMed  Google Scholar 

  22. Siriwardena D P, Fernando J F S, Wang T, et al. Probing the effect of Mg doping on triclinic Na2Mn3O7 transition metal oxide as cathode material for sodium-ion batteries. Electrochimica Acta, 2021, 394: 139139

    Article  CAS  Google Scholar 

  23. Feng J, Luo S, Wang J, et al. Stable electrochemical properties of magnesium-doped Co-free layered P2-type Na0.67Ni0.33Mn0.67O2 cathode material for sodium ion batteries. ACS Sustainable Chemistry & Engineering, 2022, 10(15): 4994–5004

    Article  CAS  Google Scholar 

  24. Ramasamy H V, Kaliyappan K, Thangavel R, et al. Efficient method of designing stable layered cathode material for sodium ion batteries using aluminum doping. Journal of Physical Chemistry Letters, 2017, 8(20): 5021–5030

    Article  CAS  PubMed  Google Scholar 

  25. Peng B, Chen Y, Zhao L, et al. Regulating the local chemical environment in layered O3−NaNi0.5Mn0.5O2 achieves practicable cathode for sodium-ion batteries. Energy Storage Materials, 2023, 56: 631–641

    Article  Google Scholar 

  26. Park Y J, Choi J U, Jo J H, et al. A new strategy to build a high-performance P2-type cathode material through titanium doping for sodium-ion batteries. Advanced Functional Materials, 2019, 29(28): 1901912

    Article  Google Scholar 

  27. Kang W, Zhang Z, Lee P K, et al. Copper substituted P2-type Na0.67CuxMn1−xO2: A stable high-power sodium-ion battery cathode. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(45): 22846–22852

    Article  CAS  Google Scholar 

  28. Zheng L, Li J, Obrovac M N. Crystal structures and electrochemical performance of air-stable Na2/3Ni1/3−xCuxMn2/3O2 in sodium cells. Chemistry of Materials, 2017, 29(4): 1623–1631

    Article  CAS  Google Scholar 

  29. Yang Q, Wang P F, Guo J Z, et al. Advanced P2−Na2/3Ni1/3Mn7/12Fe1/12O2 cathode material with suppressed P2−O2 phase transition toward high-performance sodium-ion battery. ACS Applied Materials & Interfaces, 2018, 10(40): 34272–34282

    Article  CAS  Google Scholar 

  30. Wang J, He X, Zhou D, et al. O3-type Na[Fe1/3Ni1/3Ti1/3]O2 cathode material for rechargeable sodium ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(9): 3431–3437

    Article  CAS  Google Scholar 

  31. Bucher N, Hartung S, Franklin J B, et al. P2−NaxCoyMn1−yO2 (y = 0, 0.1) as cathode materials in sodium-ion batteries—Effects of doping and morphology to enhance cycling stability. Chemistry of Materials, 2016, 28(7): 2041–2051

    Article  CAS  Google Scholar 

  32. Li Z Y, Zhang J, Gao R, et al. Unveiling the role of Co in improving the high-rate capability and cycling performance of layered Na0.7Mn0.7Ni0.3−xCoxO2 cathode materials for sodium-ion batteries. ACS Applied Materials & Interfaces, 2016, 8(24): 15439–15448

    Article  CAS  Google Scholar 

  33. Fu C, Wang J, Li Y, et al. Explore the effect of Co doping on P2−Na0.67MnO2 prepared by hydrothermal method as cathode materials for sodium ion batteries. Journal of Alloys and Compounds, 2022, 918: 165569

    Article  Google Scholar 

  34. Bae E G, Jeong J, Han S, et al. Calcium-doping for structure stabilization of sodium transition metal oxide cathodes in sodium ion batteries. ECS Meeting Abstracts, 2014, MA2014–04: 390–390

    Article  Google Scholar 

  35. Matsui M, Mizukoshi F, Hasegawa H, et al. Ca-substituted P3-type NaxNi1/3Mn1/3Co1/3O2 as a potential high voltage cathode active material for sodium-ion batteries. Journal of Power Sources, 2021, 485: 229346

    Article  CAS  Google Scholar 

  36. Yu T Y, Kim J, Hwang J Y, et al. High-energy O3−Na1−2xCax[Ni0.5Mn0.5]O2 cathodes for long-life sodium-ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(27): 13776–13786

    Article  CAS  Google Scholar 

  37. Shen Q, Liu Y, Zhao X, et al. Transition-metal vacancy manufacturing and sodium-site doping enable a high-performance layered oxide cathode through cationic and anionic redox chemistry. Advanced Functional Materials, 2021, 31(51): 2106923

    Article  CAS  Google Scholar 

  38. Peng B, Chen Y, Wang F, et al. Unusual site-selective doping in layered cathode strengthens electrostatic cohesion of alkali-metal layer for practicable sodium-ion full cell. Advanced Materials, 2022, 34(6): 2103210

    Article  CAS  Google Scholar 

  39. Li Q, Li G, Fu C, et al. K+-doped Li1.2Mn0.54Co0.13Ni0.13O2: A novel cathode material with an enhanced cycling stability for lithium-ion batteries. ACS Applied Materials & Interfaces, 2014, 6(13): 10330–10341

    Article  CAS  Google Scholar 

  40. Wang K, Wu Z G, Zhang T, et al. P2-type Na0.67Mn0.72Ni0.14Co0.14O2 with K+ doping as new high rate performance cathode material for sodium-ion batteries. Electrochimica Acta, 2016, 216: 51–57

    Article  CAS  Google Scholar 

  41. Wang C, Liu L, Zhao S, et al. Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery. Nature Communications, 2021, 12(1): 2256

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang Q C, Meng J K, Yue X Y, et al. Tuning P2-structured cathode material by Na-site Mg substitution for Na-ion batteries. Journal of the American Chemical Society, 2019, 141(2): 840–848

    Article  CAS  PubMed  Google Scholar 

  43. Li X, Wang T, Yuan Y, et al. Whole-voltage-range oxygen redox in P2-layered cathode materials for sodium-ion batteries. Advanced Materials, 2021, 33(13): 2008194

    Article  CAS  Google Scholar 

  44. Huang Y, Zhu Y, Nie A, et al. Enabling anionic redox stability of P2−Na5/6Li1/4Mn3/4O2 by Mg substitution. Advanced Materials, 2022, 34(9): 2105404

    Article  CAS  Google Scholar 

  45. Zhang Q, Huang Y, Liu Y, et al. F-doped O3−NaNi1/3Fe1/3Mn1/3O2 as high-performance cathode materials for sodium-ion batteries. Science China Materials, 2017, 60(7): 629–636

    Article  CAS  Google Scholar 

  46. Shi W J, Yan Y W, Chi C, et al. Fluorine anion doped Na0.44MnO2 with layer-tunnel hybrid structure as advanced cathode for sodium ion batteries. Journal of Power Sources, 2019, 427: 129–137

    Article  ADS  CAS  Google Scholar 

  47. Chen H, Wu Z, Zhong Y, et al. Boosting the reactivity of Ni2+/Ni3+ redox couple via fluorine doping of high-performance Na0.6Mn0.95Ni0.05O2−xFx cathode. Electrochimica Acta, 2019, 308: 64–73

    Article  CAS  Google Scholar 

  48. Liu K, Tan S, Moon J, et al. Sodium oxide cathodes: Insights into the enhanced cycle and rate performances of the F-substituted P2-type oxide cathodes for sodium-ion batteries. Advanced Energy Materials, 2020, 10(19): 2070087

    Article  CAS  Google Scholar 

  49. Kang W, Ma P, Liu Z, et al. The tunable electrochemical activity of P2−Na0.6Mn0.7Ni0.3O2−xFx microspheres as high-rate cathodes for high-performance sodium ion batteries. ACS Applied Materials & Interfaces, 2021, 13(13): 15333–15343

    Article  CAS  Google Scholar 

  50. Liu G, Xu W, Wu J, et al. Unlocking high-rate O3 layered oxide cathode for Na-ion batteries via ion migration path modulation. Journal of Energy Chemistry, 2023, 83: 53–61

    Article  CAS  Google Scholar 

  51. Yu T Y, Sun Y K. A fluorinated O3-type layered cathode for long-life sodium-ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2022, 10(44): 23639–23648

    Article  CAS  Google Scholar 

  52. Wang Y, Wang X, Li X, et al. The novel P3-type layered Na0.65Mn0.75Ni0.25O2 oxides doped by non-metallic elements for high performance sodium-ion batteries. Chemical Engineering Journal, 2019, 360: 139–147

    Article  CAS  Google Scholar 

  53. Guo Z, Li X, Lyu Y, et al. Improved electrochemical performance of B doped O′3−NaMnO2 for Na-ion battery. Electrochimica Acta, 2022, 430: 141079

    Article  CAS  Google Scholar 

  54. Wang X, Dong X, Feng X, et al. In-plane BO3 configuration in P2 layered oxide enables outstanding long cycle performance for sodium ion batteries. Small Methods, 2023, 7(1): 2201201

    Article  CAS  Google Scholar 

  55. Qian L, Or T, Zheng Y, et al. Critical operation strategies toward high performance lithium metal batteries. Renewables, 2023, 1(2): 114–141

    Article  Google Scholar 

  56. Qian L, Zheng Y, Or Y, et al. Advanced materials engineering to tailor nucleation and growth towards uniform deposition for anode-less lithium metal batteries. Small, 2022, 18(50): 2205233

    Article  CAS  Google Scholar 

  57. Wang J, Teng Y, Su G, et al. A dual-modification strategy for P2-type layered oxide via bulk Mg/Ti co-substitution and MgO surface coating for sodium ion batteries. Journal of Colloid and Interface Science, 2022, 608: 3013–3021

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Pei Q, Lu M, Liu Z, et al. Improving the Na0.67Ni0.33Mn0.67O2 cathode material for high-voltage cyclability via Ti/Cu co-doping for sodium-ion batteries. ACS Applied Energy Materials, 2022, 5(2): 1953–1962

    Article  CAS  Google Scholar 

  59. Guo S, Han H, Guo S, et al. Improving rate capability and cycling stability of P2-type sodium-ion layered cathode by synergistic effect of K/Ti co-doping strategy. Ionics, 2023, 29(7): 2735–2746

    Article  CAS  Google Scholar 

  60. Liu Z, Zhou C, Liu J, et al. Phase tuning of P2/O3-type layered oxide cathode for sodium ion batteries via a simple Li/F co-doping route. Chemical Engineering Journal, 2022, 431: 134273

    Article  CAS  Google Scholar 

  61. Dong X, Wang X, Lu Z, et al. Construction of Cu−Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2023, early access: https://doi.org/10.1016/j.cclet.2023.108605

  62. Zheng Y M, Huang X B, Meng X M, et al. Copper and zirconium co-doped O3-type sodium iron and manganese oxide as the cobalt/nickel-free high-capacity and air-stable cathode for sodium-ion batteries. ACS Applied Materials & Interfaces, 2021, 13(38): 45528–45537

    Article  CAS  Google Scholar 

  63. Li F, Tian Y, Sun Y, et al. Suppressing the P2−O2 phase transformation and Na+/vacancy ordering of high-voltage manganese-based P2-type cathode by cationic co-doping. Journal of Colloid and Interface Science, 2022, 611: 752–759

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Anilkumar A, Nair N, Nair S V, et al. Tailoring high Na content in P2-type layered oxide cathodes via Cu−Li dual doping for sodium-ion batteries. Journal of Energy Storage, 2023, 72: 108291

    Article  Google Scholar 

  65. Wang P F, You Y, Yin Y X, et al. Suppressing the P2−O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries. Angewandte Chemie, 2016, 128(26): 7571–7575

    Article  ADS  Google Scholar 

  66. Wu X, Guo J, Wang D, et al. P2-type Na0.66Ni0.33−xZnxMn0.67O2 as new high-voltage cathode materials for sodium-ion batteries. Journal of Power Sources, 2015, 281: 18–26

    Article  ADS  CAS  Google Scholar 

  67. Wang L, Sun Y G, Hu L L, et al. Copper-substituted Na0.67N03xCuxMn0.7O2 cathode materials for sodium-ion batteries with suppressed P2−O2 phase transition. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(18): 8752–8761

    Article  CAS  Google Scholar 

  68. Yoshida H, Yabuuchi N, Kubota K, et al. P2-type Na2/3Ni1/3Mn2/3−xTixO2 as a new positive electrode for higher energy Na-ion batteries. Chemical Communications, 2014, 50(28): 3677–3680

    Article  CAS  PubMed  Google Scholar 

  69. Yang Q, Wang P F, Guo J Z, et al. Advanced P2−Na2/3Ni1/3Mn7/12Fe1/12O2 cathode material with suppressed P2−O2 phase transition toward high-performance sodium-ion battery. ACS Applied Materials & Interfaces, 2018, 10(40): 34272–34282

    Article  CAS  Google Scholar 

  70. Hou P, Sun Y, Li F, et al. A high energy-density P2−Na2/3[Ni0.3Co0.1Mn0.6]O2 cathode with mitigated P2−O2 transition for sodium-ion batteries. Nanoscale, 2019, 11(6): 2787–2794

    Article  CAS  PubMed  Google Scholar 

  71. Li Z Y, Zhang J, Gao R, et al. Unveiling the role of Co in improving the high-rate capability and cycling performance of layered Na0.7Mn0.7Ni0.3−xCoxO2 cathode materials for sodium-ion batteries. ACS Applied Materials & Interfaces, 2016, 8(24): 15439–15448

    Article  CAS  Google Scholar 

  72. Jin T, Wang P F, Wang Q C, et al. Realizing complete solid-solution reaction in high sodium content P2-type cathode for high-performance sodium-ion batteries. Angewandte Chemie International Edition, 2020, 59(34): 14511–14516

    Article  CAS  PubMed  Google Scholar 

  73. Kim D, Kang S H, Slater M, et al. Enabling sodium batteries using lithium-substituted sodium layered transition metal oxide cathodes. Advanced Energy Materials, 2011, 1(3): 333–336

    Article  CAS  Google Scholar 

  74. de la Llave E, Talaie E, Levi E, et al. Improving energy density and structural stability of manganese oxide cathodes for Na-ion batteries by structural lithium substitution. Chemistry of Materials, 2016, 28(24): 9064–9076

    Article  CAS  Google Scholar 

  75. Clément R J, Xu J, Middlemiss D S, et al. Direct evidence for high Na+ mobility and high voltage structural processes in P2−Nax[LiyNizMn1−y−z]O2 (x, y, z ⩽ 1) cathodes from solid-state NMR and DFT calculations. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(8): 4129–4143

    Article  Google Scholar 

  76. Lee J, Koo S, Lee J, et al. Rational design of Ti-based oxygen redox layered oxides for advanced sodium-ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2021, 9(19): 11762–11770

    Article  CAS  Google Scholar 

  77. Zhao Q, Butt F K, Yang M, et al. Tuning oxygen redox chemistry of P2-type manganese-based oxide cathode via dual Cu and Co substitution for sodium-ion batteries. Energy Storage Materials, 2021, 41: 581–587

    Article  Google Scholar 

  78. Hou P, Li F, Wang Y, et al. Mitigating the P2−O2 phase transition of high-voltage P2−Na2/3[Ni1/3Mn2/3]O2 cathodes by cobalt gradient substitution for high-rate sodium-ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(9): 4705–4713

    Article  CAS  Google Scholar 

  79. Oh S M, Myung S T, Yoon C S, et al. Advanced Na[Ni0.25Fe0.5Mn0.25]O2/C−Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage. Nano Letters, 2014, 14(3): 1620–1626

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Keller M, Buchholz D, Passerini S. Cathode materials: Layered Na-ion cathodes with outstanding performance resulting from the synergetic effect of mixed P- and O-type phases. Advanced Energy Materials, 2016, 6(3): aenm.201670018

    Article  Google Scholar 

  81. Oh S M, Myung S T, Hwang J Y, et al. High capacity O3-type Na[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]O2 cathode for sodium ion batteries. Chemistry of Materials, 2014, 26(21): 6165–6171

    Article  CAS  Google Scholar 

  82. Vassilaras P, Toumar A J, Ceder G. Electrochemical properties of NaNi1/3Co1/3Fe1/3O2 as a cathode material for Na-ion batteries. Electrochemistry Communications, 2014, 38: 79–81

    Article  CAS  Google Scholar 

  83. Thorne J S, Dunlap R A, Obrovac M N. Investigation of P2−Na2/3Mn1/3Fe1/3Co1/3O2 for Na-ion battery positive electrodes. Journal of the Electrochemical Society, 2014, 161(14): A2232–A2236

    Article  CAS  Google Scholar 

  84. Mu L, Xu S, Li Y, et al. Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode. Advanced Materials, 2015, 27(43): 6928–6933

    Article  CAS  PubMed  Google Scholar 

  85. Wang Q, Mariyappan S, Vergnet J, et al. Reaching the energy density limit of layered O3-NaNi0.5Mn0.5O2 electrodes via dual Cu and Ti substitution. Advanced Energy Materials, 2019, 9(36): 1901785

    Article  Google Scholar 

  86. Yao H R, Wang P F, Gong Y, et al. Designing air-stable O3-type cathode materials by combined structure modulation for Na-ion batteries. Journal of the American Chemical Society, 2017, 139(25): 8440–8443

    Article  CAS  PubMed  Google Scholar 

  87. Wang Y, Xiao R, Hu Y S, et al. P2−Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries. Nature Communications, 2015, 6(1): 6954

    Article  ADS  CAS  PubMed  Google Scholar 

  88. Peng B, Zhou Z, Xu J, et al. Crystal facet design in layered oxide cathode enables low temperature sodium ion batteries. ACS Materials Letters, 2023, 5(8): 2233–2242

    Article  CAS  Google Scholar 

  89. Xiao L, Ji F, Zhang J, et al. Doping regulation in polyanionic compounds for advanced sodium ion batteries. Small, 2023, 19(1): 2205732

    Article  CAS  Google Scholar 

  90. Wang P, Xin H, Zuo T, et al. An abnormal 3.7 Volt O3-type sodium-ion battery cathode. Angewandte Chemie International Edition, 2018, 57(27): 8178–8183

    Article  CAS  PubMed  Google Scholar 

  91. Qian L, Thiruppathi A R, Elmahdy R, et al. Graphene-oxide based electrochemical sensors for the sensitive detection of pharmaceutical drug naproxen. Sensors, 2020, 20(5): 1252

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang K, Zhang Z, Cheng S, et al. Precipitate-stabilized surface enabling high performance Na0.67Ni0.33−xMn0.67ZnxO2 for sodium-ion battery. eScience, 2022, 2: 529–536

    Article  Google Scholar 

  93. Leng M, Bi J, Wang W, et al. Superior electrochemical performance of O3-type NaNi0.5−xMn0.3Ti0.2ZrxO2 cathode material for sodium-ion batteries from Ti and Zr substitution of the transition metals. Journal of Alloys and Compounds, 2020, 816: 152581

    Article  CAS  Google Scholar 

Download references

Ackownledgements

The authors thank the National Natural Science Foundation of China (No. 22250710676), the Fujian Provice Super 100 Talents Program, and the Fujian Provice 100 Talents Program, Fujian Provice Minjiang Scholar Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun Zheng or Lanting Qian.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zhang, H., Wu, Y. et al. Advances in doping strategies for sodium transition metal oxides cathodes: A review. Front. Energy (2024). https://doi.org/10.1007/s11708-024-0918-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11708-024-0918-8

Keywords

Navigation