Skip to main content
Log in

Function-reversible facets enabling SrTiO3 nanocrystals for improved photocatalytic hydrogen evolution

  • Research Article
  • Special Column: Toward Carbon Neutrality by Artificial Photosynthesis
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

It has been widely reported that, for faceted nanocrystals, the two adjacent facets with different band levels contribute to promoted charge separation, and provide active sites for photocatalytic reduction and oxidation reaction, respectively. In such cases, only one family of facets can be used for photocatalytic hydrogen evolution. Herein, by using SrTiO3 nanocrystals enclosed by {023} and {001} facets as a model photocatalyst, this paper proposed a strategy to achieve the full-facets-utilization of the nanocrystals for photocatalytic hydrogen via chemically depositing Pt nanoparticles on all facets. The photo-deposition experiment of CdS provided direct evidence to demonstrate that the {023} facets which were responsible for photooxidation reaction can be function-reversed for photocatalytic hydrogen evolution after depositing Pt nanoparticles, together with the {001} facets. Thus, the full-facets-utilization led to a much-improved activity for photocatalytic hydrogen, in contrast to those SrTiO3 nanocrystals with only {001} facets deposited by Pt nanoparticles via a photo-deposition method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Samanta B, Morales-García Á, Illas F, et al. Challenges of modeling nanostructured materials for photocatalytic water splitting. Chemical Society Reviews, 2022, 51(9): 3794–3818

    Article  Google Scholar 

  2. Zhu Q, Xu Q, Du M, et al. Recent progress of metal sulfide photocatalysts for solar energy conversion. Advanced Materials, 2022, 34(45): 2202929

    Article  Google Scholar 

  3. Feng C, Wu Z P, Huang K W, et al. Surface modification of 2D photocatalysts for solar energy conversion. Advanced Materials, 2022, 34(23): 2200180

    Article  Google Scholar 

  4. Tao X, Zhao Y, Wang S, et al. Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts. Chemical Society Reviews, 2022, 51(9): 3561–3608

    Article  Google Scholar 

  5. Xue Z H, Luan D, Zhang H, et al. Single-atom catalysts for photocatalytic energy conversion. Joule, 2022, 6(1): 92–133

    Article  Google Scholar 

  6. Hisatomi T, Domen K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nature Catalysis, 2019, 2(5): 387–399

    Article  Google Scholar 

  7. Wang Z, Hisatomi T, Li R, et al. Efficiency accreditation and testing protocols for particulate photocatalysts toward solar fuel production. Joule, 2021, 5(2): 344–359

    Article  Google Scholar 

  8. Ismael M. Environmental remediation and sustainable energy generation via photocatalytic technology using rare earth metals modified g-C3N4: A review. Journal of Alloys and Compounds, 2023, 931: 167469

    Article  Google Scholar 

  9. Zhang Y, Xu J, Zhou J, et al. Metal-organic framework-derived multifunctional photocatalysts. Chinese Journal of Catalysis, 2022, 43(4): 971–1000

    Article  Google Scholar 

  10. Zhou C, Wang T, Li D, et al. Flux-assisted low temperature synthesis of SnNb2O6 nanoplates with enhanced visible light driven photocatalytic H2-production. Journal of Physical Chemistry C, 2021, 125(42): 23219–23225

    Article  Google Scholar 

  11. Wang J, Wang J, Shi R, et al. Facile fabrication of N-doped K2Nb2O6 nanocrystals with defective pyrochlore structure for improved visible-light photocatalytic hydrogen production. Small Structures, 2023, 4(1): 2200105

    Article  MathSciNet  Google Scholar 

  12. Guo L, Chen Y, Su J, et al. Obstacles of solar-powered photocatalytic water splitting for hydrogen production: A perspective from energy flow and mass flow. Energy, 2019, 172: 1079–1086

    Article  Google Scholar 

  13. Tang C, Cheng M, Lai C, et al. Recent progress in the applications of non-metal modified graphitic carbon nitride in photocatalysis. Coordination Chemistry Reviews, 2023, 474: 214846

    Article  Google Scholar 

  14. Wang N, Cheng L, Liao Y, et al. Effect of functional group modifications on the photocatalytic performance of g-C3N4. Small, 2023, 19(27): 2300109

    Article  Google Scholar 

  15. Tang Z R, Han B, Han C, et al. One dimensional CdS based materials for artificial photoredox reactions. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(6): 2387–2410

    Article  Google Scholar 

  16. Chen R, Chen J, Che H, et al. Atomically dispersed main group magnesium on cadmium sulfide as the active site for promoting photocatalytic hydrogen evolution catalysis. Chinese Journal of Structural Chemistry, 2022, 41: 2201014–2201018

    Google Scholar 

  17. Yuan L, Han C, Yang M Q, et al. Photocatalytic water splitting for solar hydrogen generation: Fundamentals and recent advancements. International Reviews in Physical Chemistry, 2016, 35(1): 1–36

    Article  Google Scholar 

  18. Li S H, Zhang N, Xie X, et al. Stress-transfer-induced in situ formation of ultrathin nickel phosphide nanosheets for efficient hydrogen evolution. Angewandte Chemie International Edition, 2018, 57(40): 13082–13085

    Article  Google Scholar 

  19. Moon H S, Hsiao K C, Wu M C, et al. Spatial separation of cocatalysts on Z-scheme organic/inorganic heterostructure hollow spheres for enhanced photocatalytic H2 evolution and in-depth analysis of the charge-transfer mechanism. Advanced Materials, 2023, 35(4): 2200172

    Article  Google Scholar 

  20. Zhang L, Zhang J, Yu H, et al. Emerging S-scheme photocatalyst. Advanced Materials, 2022, 34(11): 2107668

    Article  Google Scholar 

  21. Kosco J, Gonzalez-Carrero S, Howells C T, et al. Generation of long-lived charges in organic semiconductor heterojunction nanoparticles for efficient photocatalytic hydrogen evolution. Nature Energy, 2022, 7(4): 340–351

    Article  Google Scholar 

  22. Shen R, Zhang L, Li N, et al. W-N bonds precisely boost Z-scheme interfacial charge transfer in g-C3N4/WO3 heterojunctions for enhanced photocatalytic H2 evolution. ACS Catalysis, 2022, 12(16): 9994–10003

    Article  Google Scholar 

  23. Sun S, Gao R, Liu X, et al. Engineering interfacial band bending over bismuth vanadate/carbon nitride by work function regulation for efficient solar-driven water splitting. Science Bulletin, 2022, 67(4): 389–397

    Article  Google Scholar 

  24. Cai H, Wang B, Xiong L, et al. Orienting the charge transfer path of type-II heterojunction for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 256: 117853

    Article  Google Scholar 

  25. Zhang T, Meng F, Cheng Y, et al. Z-scheme transition metal bridge of Co9S8/Cd/CdS tubular heterostructure for enhanced photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2021, 286: 119853

    Article  Google Scholar 

  26. Liu D, Zhang J, Li C, et al. In-situ fabrication of atomic charge transferring path for constructing heterojunction photocatalysts with hierarchical structure. Applied Catalysis B: Environmental, 2019, 248: 459–465

    Article  Google Scholar 

  27. Wei D, Tan Y, Wang Y, et al. Function-switchable metal/semiconductor junction enables efficient photocatalytic overall water splitting with selective water oxidation products. Science Bulletin, 2020, 65(16): 1389–1395

    Article  Google Scholar 

  28. Hu J, Chen D, Mo Z, et al. Z-scheme 2D/2D heterojunction of black phosphorus/monolayer Bi2WO6 nanosheets with enhanced photocatalytic activities. Angewandte Chemie International Edition, 2019, 58(7): 2073–2077

    Article  Google Scholar 

  29. Faraji M, Yousefi M, Yousefzadeh S, et al. Two-dimensional materials in semiconductor photoelectrocatalytic systems for water splitting. Energy & Environmental Science, 2019, 12(1): 59–95

    Article  Google Scholar 

  30. Li J, Wu C, Li J, et al. 1D/2D TiO2/ZnIn2S4 S-scheme heterojunction photocatalyst for efficient hydrogen evolution. Chinese Journal of Catalysis, 2022, 43(2): 339–349

    Article  Google Scholar 

  31. Li H, Sun B, Gao T, et al. Ti3C2 MXene co-catalyst assembled with mesoporous TiO2 for boosting photocatalytic activity of methyl orange degradation and hydrogen production. Chinese Journal of Catalysis, 2022, 43(2): 461–471

    Article  Google Scholar 

  32. Yan T, Zhang X, Liu H, et al. CeO2 particles anchored to Ni2P nanoplate for efficient photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2022, 41: 2201047–2201053

    Google Scholar 

  33. Yang J, Wu X, Mei Z, et al. CVD assisted synthesis of macro/mesoporous TiO2/g-C3N4 S-scheme heterojunction for enhanced photocatalytic hydrogen evolution. Advanced Sustainable Systems, 2022, 6(8): 2200056

    Article  Google Scholar 

  34. Mei Z, Wang G, Yan S, Wang J. Rapid microwave-assisted synthesis of 2D/1D ZnIn2S4/TiO2 S-scheme heterojunction for catalyzing photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2021, 37(6): 2009097 (in Chinese)

    Google Scholar 

  35. Wang P, Li H, Cao Y, et al. Carboxyl-functionalized graphene for highly efficient H2-evolution activity of TiO2 photocatalyst. Acta Physico-Chimica Sinica, 2021, 37(6): 2008047 (in Chinese)

    Google Scholar 

  36. Han B, Liu S, Zhang N, et al. One-dimensional CdS@MoS2 core-shell nanowires for boosted photocatalytic hydrogen evolution under visible light. Applied Catalysis B: Environmental, 2017, 202: 298–304

    Article  Google Scholar 

  37. Yang M Q, Han C, Xu Y J. Insight into the effect of highly dispersed MoS2 versus layer-structured MoS2 on the photocorrosion and photoactivity of CdS in graphene-CdS-MoS2 composites. Journal of Physical Chemistry C, 2015, 119(49): 27234–27246

    Article  Google Scholar 

  38. Li Y H, Qi M Y, Li J Y, et al. Noble metal free CdS@CuS-NixP hybrid with modulated charge transfer for enhanced photocatalytic performance. Applied Catalysis B: Environmental, 2019, 257: 117934

    Article  Google Scholar 

  39. Lu K Q, Qi M Y, Tang Z R, et al. Earth-abundant MoS2 and cobalt phosphate dual cocatalysts on 1D CdS nanowires for boosting photocatalytic hydrogen production. Langmuir, 2019, 35(34): 11056–11065

    Article  Google Scholar 

  40. Wang Z, Wang L, Cheng B, et al. Photocatalytic H2 evolution coupled with furfuralcohol oxidation over Pt-modified ZnCdS solid solution. Small Methods, 2021, 5(11): 2100979

    Article  Google Scholar 

  41. Adenle A, Zhou H, Tao X, et al. Crystal facet modulation of Bi2WO6 microplates for spatial charge separation and inhibiting reverse reaction. Chemical Communications, 2021, 57(88): 11637–11640

    Article  Google Scholar 

  42. Bai Y, Zhou Y, Zhang J, et al. Homophase junction for promoting spatial charge separation in photocatalytic water splitting. ACS Catalysis, 2019, 9(4): 3242–3252

    Article  Google Scholar 

  43. Scanlon D O, Dunnill C W, Buckeridge J, et al. Band alignment of rutile and anatase TiO2. Nature Materials, 2013, 12(9): 798–801

    Article  Google Scholar 

  44. Liu M, Jing D, Zhou Z, et al. Twin-induced one-dimensional homojunctions yield high quantum efficiency for solar hydrogen generation. Nature Communications, 2013, 4(1): 2278

    Article  Google Scholar 

  45. Liu M, Wang L, (Max) Lu G, et al. Twins in Cd1−xZnxS solid solution: Highly efficient photocatalyst for hydrogen generation from water. Energy & Environmental Science, 2011, 4: 1372–1378

    Article  Google Scholar 

  46. Naldoni A, Altomare M, Zoppellaro G, et al. Photocatalysis with reduced TiO2: From black TiO2 to cocatalyst-free hydrogen production. ACS Catalysis, 2019, 9(1): 345–364

    Article  Google Scholar 

  47. Wang B, Shen S, Mao S S. Black TiO2 for solar hydrogen conversion. Journal of Materiomics, 2017, 3(2): 96–111

    Article  Google Scholar 

  48. Chen X, Liu L, Yu P Y, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011, 331(6018): 746–750

    Article  Google Scholar 

  49. Wang B, Shen S, Guo L. Surface reconstruction of facet-functionalized SrTiO3 nanocrystals for photocatalytic hydrogen evolution. ChemCatChem, 2016, 8(4): 798–804

    Article  Google Scholar 

  50. Takata T, Jiang J, Sakata Y, et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature, 2020, 581(7809): 411–414

    Article  Google Scholar 

  51. Ohno T, Sarukawa K, Matsumura M. Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New Journal of Chemistry, 2002, 26(9): 1167–1170

    Article  Google Scholar 

  52. Tachikawa T, Yamashita S, Majima T. Evidence for crystal-face-dependent TiO2 photocatalysis from single-molecule imaging and kinetic analysis. Journal of the American Chemical Society, 2011, 133(18): 7197–7204

    Article  Google Scholar 

  53. Li R, Zhang F, Wang D, et al. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nature Communications, 2013, 4(1): 1432

    Article  Google Scholar 

  54. Li R, Han H, Zhang F, et al. Highly efficient photocatalysts constructed by rational assembly of dual-cocatalysts separately on different facets of BiVO4. Energy & Environmental Science, 2014, 7(4): 1369–1376

    Article  Google Scholar 

  55. Zhu J, Fan F, Chen R, et al. Direct imaging of highly anisotropic photogenerated charge separations on different facets of a single BiVO4 photocatalyst. Angewandte Chemie International Edition, 2015, 54(31): 9111–9114

    Article  Google Scholar 

  56. Li N, Liu M, Zhou Z, et al. Charge separation in facet-engineered chalcogenide photocatalyst: A selective photocorrosion approach. Nanoscale, 2014, 6(16): 9695–9702

    Article  Google Scholar 

  57. Wang B, Liu M, Zhou Z, et al. Surface activation of faceted photocatalyst: When metal cocatalyst determines the nature of the facets. Advanced Science, 2015, 2(11): 1500153

    Article  Google Scholar 

  58. Wang B, Shen S, Guo L. SrTiO3 single crystals enclosed with high-indexed {023} facets and {001} facets for photocatalytic hydrogen and oxygen evolution. Applied Catalysis B: Environmental, 2015, 166–167: 320–326

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 52225606 and 51888103), the Fundamental Research Funds for the Central Universities, China, and the Youth Innovation Team of Shaanxi Universities, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaohua Shen.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., An, B., Li, X. et al. Function-reversible facets enabling SrTiO3 nanocrystals for improved photocatalytic hydrogen evolution. Front. Energy 18, 101–109 (2024). https://doi.org/10.1007/s11708-023-0894-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-023-0894-4

Keywords

Navigation