Skip to main content
Log in

Rise of aluminum-chalcogen batteries: A promising path to sustainable energy storage

  • News & Highlights
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Qian S, Liu M, Dou Y, et al. A ‘Moore’s Law’ for fibers enables intelligent fabrics. National Science Review, 2023, 10(1): nwac202

    Article  Google Scholar 

  2. Zhang L, Dou Y H, Guo H P, et al. A facile way to fabricate double-shell pomegranate-like porous carbon microspheres for high-performance Li-ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(24): 12073–12079

    Article  Google Scholar 

  3. Liu X, Zhang L, Lan X, et al. Paragenesis of Mo2C nanocrystals in mesoporous carbon nanofibers for electrocatalytic hydrogen evolution. Electrochimica Acta, 2018, 274: 23–30

    Article  Google Scholar 

  4. Gui Y H, Liu X, Dou Y H, et al. Manipulating the assembled structure of atomically thin CoSe2 nanomaterials for enhanced water oxidation catalysis. Nano Energy, 2019, 57: 371–378

    Article  Google Scholar 

  5. Shi F, Chen C, Xu Z L. Recent advances on electrospun nanofiber materials for post-lithium ion batteries. Advanced Fiber Materials, 2021, 3(5): 275–301

    Article  Google Scholar 

  6. Li J, Zhang X, Lu Y, et al. Electrospun fluorinated polyimide/polyvinylidene fluoride composite membranes with high thermal stability for lithium ion battery separator. Advanced Fiber Materials, 2022, 4(1): 108–118

    Article  Google Scholar 

  7. Liu X, Zhang Y, Guo X, et al. Electrospun metal–organic framework nanofiber membranes for energy storage and environmental protection. Advanced Fiber Materials, 2022, 4(6): 1463–1485

    Article  Google Scholar 

  8. Guo M, Zhu H, Wan P, et al. Freestanding and ultra-flexible PAN/ZIF-67 hybrid membrane with controlled porosity for high-performance and high-safety lithium batteries separator. Advanced Fiber Materials, 2022, 4(6): 1511–1524

    Article  Google Scholar 

  9. Craig B, Schoetz T, Cruden A, et al. Review of current progress in non-aqueous aluminium batteries. Renewable & Sustainable Energy Reviews, 2020, 133: 110100

    Article  Google Scholar 

  10. Wang Y, Chen R, Chen T, et al. Emerging non-lithium ion batteries. Energy Storage Materials, 2016, 4: 103–129

    Article  Google Scholar 

  11. Ma L, Lv Y, Wu J, et al. Recent advances in emerging nonlithium metal—sulfur batteries: A review. Advanced Energy Materials, 2021, 24(11): 2100770

    Article  Google Scholar 

  12. Pang Q Q, Meng J S, Gupta S, et al. Fast-charging aluminium–chalcogen batteries resistant to dendritic shorting. Nature, 2022, 608(7924): 704–711

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyi Dou or Wei Yan.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhang, B., Dou, X. et al. Rise of aluminum-chalcogen batteries: A promising path to sustainable energy storage. Front. Energy 17, 567–568 (2023). https://doi.org/10.1007/s11708-023-0887-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-023-0887-3

Navigation