Skip to main content

Advertisement

Log in

Liquid-based high-temperature receiver technologies for next-generation concentrating solar power: A review of challenges and potential solutions

  • Review Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

To reduce the levelized cost of energy for concentrating solar power (CSP), the outlet temperature of the solar receiver needs to be higher than 700 °C in the next-generation CSP. Because of extensive engineering application experience, the liquid-based receiver is an attractive receiver technology for the next-generation CSP. This review is focused on four of the most promising liquid-based receivers, including chloride salts, sodium, lead-bismuth, and tin receivers. The challenges of these receivers and corresponding solutions are comprehensively reviewed and classified. It is concluded that combining salt purification and anti-corrosion receiver materials is promising to tackle the corrosion problems of chloride salts at high temperatures. In addition, reducing energy losses of the receiver from sources and during propagation is the most effective way to improve the receiver efficiency. Moreover, resolving the sodium fire risk and material compatibility issues could promote the potential application of liquid-metal receivers. Furthermore, using multiple heat transfer fluids in one system is also a promising way for the next-generation CSP. For example, the liquid sodium is used as the heat transfer fluid while the molten chloride salt is used as the storage medium. In the end, suggestions for future studies are proposed to bridge the research gaps for > 700 °C liquid-based receivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

Q ab :

Thermal energy absorbed by the heat transfer fluid/W

Q in :

Solar energy concentrated to receiver/W

Q conv :

Convective energy loss of the receiver/W

Q ref :

Reflected energy loss of the receiver/W

Q rad :

Radiative thermal loss of the receiver/W

R :

Universal gas constant/(8.314 J(mol·K)−1)

ηr :

Receiver efficiency

T :

Temperature/K

T in :

Inlet temperature of the receiver/K

T out :

Inlet temperature of the receiver/K

v corrosion :

Corrosion rate/(μm·a−1)

α :

Absorption

ε :

Emissivity

CSP:

Concentrating solar power

FDTD:

Finite-different time-domain

FVM:

Finite volume method

HTF:

Heat transfer fluid

LBE:

Lead-bismuth eutectic

LCOE:

Levelized cost of energy

MCRT:

Monte carlo ray tracing

MDMC:

Metal-dielectric multilayer coatings

PSA:

Plataforma solar de almeria

SPT:

Solar power tower

SSC:

Solar selective coating

References

  1. Li M J, Zhu H H, Guo J Q, et al. The development technology and applications of supercritical CO2 power cycle in nuclear energy, solar energy and other energy industries. Applied Thermal Engineering, 2017, 126: 255–275

    Article  Google Scholar 

  2. Heywood H. Solar energy: a challenge to the future. Nature, 1957, 180(4577): 115–118

    Article  Google Scholar 

  3. Lewis N S. Toward cost-effective solar energy use. Science, 2007, 315(5813): 798–801

    Article  Google Scholar 

  4. Kraemer D, Jie Q, McEnaney K, et al. Concentrating solar thermoelectric generators with a peak efficiency of 7.4%. Nature Energy, 2016, 1(11): 16153

    Article  Google Scholar 

  5. He Y L, Wang K, Qiu Y, et al. Review of the solar flux distribution in concentrated solar power: Non-uniform features, challenges, and solutions. Applied Thermal Engineering, 2019, 149: 448–474

    Article  Google Scholar 

  6. Al-Ashouri A, Köhnen E, Li B, et al. Monolithic perovskite/silicon tandem solar cell with > 29% efficiency by enhanced hole extraction. Science, 2020, 370(6522): 1300–1309

    Article  Google Scholar 

  7. NREL. Life cycle greenhouse gas emissions from concentrating solar power. Technical Report, National Renewable Energy Laboratories, 2012

  8. Khamlich I, Zeng K, Flamant G, et al. Technical and economic assessment of thermal energy storage in concentrated solar power plants within a spot electricity market. Renewable & Sustainable Energy Reviews, 2020, 139: 110583

    Article  Google Scholar 

  9. Merchán R, Santos M, Medina A, et al. High temperature central tower plants for concentrated solar power: 2021 overview. Renewable & Sustainable Energy Reviews, 2021, 155: 111828

    Article  Google Scholar 

  10. Lilliestam J, Labordena M, Patt A, et al. Empirically observed learning rates for concentrating solar power and their responses to regime change. Nature Energy, 2017, 2: 17094

    Article  Google Scholar 

  11. Pitz-Paal R. Concentrating solar power: Still small but learning fast. Nature Energy, 2017, 2(7): 17095

    Article  Google Scholar 

  12. Wang K, He Y L. Thermodynamic analysis and optimization of a molten salt solar power tower integrated with a recompression supercritical CO2 Brayton cycle based on integrated modeling. Energy Conversion and Management, 2017, 135: 336–350

    Article  Google Scholar 

  13. Qiu Y, Li M J, He Y L, et al. Thermal performance analysis of a parabolic trough solar collector using supercritical CO2 as heat transfer fluid under non-uniform solar flux. Applied Thermal Engineering, 2017, 115: 1255–1265

    Article  Google Scholar 

  14. He Y L, Qiu Y, Wang K, et al. Perspective of concentrating solar power. Energy, 2020, 198: 117373

    Article  Google Scholar 

  15. Guo J Q, Li M J, He Y L, et al. A systematic review of supercritical carbon dioxide (S-CO2) power cycle for energy industries: Technologies, key issues, and potential prospects. Energy Conversion and Management, 2022, 258: 115437

    Article  Google Scholar 

  16. Gauche P, Shultz A, Stapp D, et al. US DOE Gen3 and SunShot 2030 Concentrating Solar Power R&D: In search of $0.05/kWh autonomy and seasonal storage. Technical Report, Sandia National Laboratories, 2019

  17. Wang K, Li M J, Zhang Z D, et al. Evaluation of alternative eutectic salt as heat transfer fluid for solar power tower coupling a supercritical CO2 Brayton cycle from the viewpoint of systemlevel analysis. Journal of Cleaner Production, 2021, 279: 123472

    Article  Google Scholar 

  18. Ho C K, Iverson B D. Review of high-temperature central receiver designs for concentrating solar power. Renewable & Sustainable Energy Reviews, 2014, 29: 835–846

    Article  Google Scholar 

  19. Wang W Q, Jiang R, He Y L, et al. Optical-thermal-mechanical analysis of high-temperature receiver integrated with gradually sparse biomimetic heliostat field layouts for the next-generation solar power tower. Solar Energy, 2022, 232: 35–51

    Article  Google Scholar 

  20. Jiang R, Li M J, Wang W Q, et al. A new methodology of thermal performance improvement and numerical analysis of free-falling particle receiver. Solar Energy, 2021, 230: 1141–1155

    Article  Google Scholar 

  21. Du S, Li M J, Ren Q L, et al. Pore-scale numerical simulation of fully coupled heat transfer process in porous volumetric solar receiver. Energy, 2017, 140: 1267–1275

    Article  Google Scholar 

  22. Burgaleta J I, Arias S, Ramirez D. Gemasolar, the first tower thermosolar commercial plant with molten salt storage. In:17th SolarPACES Conference, Granada, Spain, 2011

  23. Pacheco J E, Bradshaw R W, Dawson D B, et al. Final test and evaluation results from the solar two project. Technical Report, Sandia National Laboratories, 2022

  24. Turchi C S, Vidal J, Bauer M. Molten salt power towers operating at 600–650 °C: Salt selection and cost benefits. Solar Energy, 2018, 164: 38–46

    Article  Google Scholar 

  25. Pérez-Álvarez R, González-Gómez P Á, Santana D, et al. Preheating of solar power tower receiver tubes for a high-temperature chloride molten salt. Applied Thermal Engineering, 2022, 216: 119097

    Article  Google Scholar 

  26. Wetzel T, Pacio J, Marocco L D, et al. Liquid metal technology for concentrated solar power systems: Contributions by the German research program. AIMS Energy, 2014, 2(1): 89–98

    Article  Google Scholar 

  27. Zhang Q, Cao D, Ge Z, et al. Response characteristics of external receiver for concentrated solar power to disturbance during operation. Applied Energy, 2020, 278: 115709

    Article  Google Scholar 

  28. Gomez-Vidal J C, Tirawat R. Corrosion of alloys in a chloride molten salt (NaCl-LiCl) for solar thermal technologies. Solar Energy Materials and Solar Cells, 2016, 157: 234–244

    Article  Google Scholar 

  29. Keny S, Gupta V, Kumbhar A G, et al. Corrosion tests of various alloys in fluorides of lithium, sodium and potassium (FLiNaK) medium for molten salt reactors in the temperature range of 550–750 °C using electrochemical techniques. Indian Journal of Chemical Technology, 2019, 26(1): 84–88

    Google Scholar 

  30. Mehos M, Turchi C, Vidal J, et al. Concentrating solar power Gen3 demonstration roadmap. Technical Report, National Renewable Energy Laboratories, 2017

  31. Fernández A G, Gomez-Vidal J, Oró E, et al. Mainstreaming commercial CSP systems: A technology review. Renewable Energy, 2019, 140: 152–176

    Article  Google Scholar 

  32. Wermac. Effects & economic impact of corrosion. 2022-1-19, available at website of Wermac

  33. Wang K, He Y L, Zhu H H. Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts. Applied Energy, 2017, 195: 819–836

    Article  Google Scholar 

  34. Wang X, Xu X, Elsentriecy H, et al. Investigation of properties of KCl-MgCl2 eutectic salt for heat transfer and thermal storage fluids in CSP systems. In: ASME Heat Transfer Summer Conference, Bellevue, USA, 2017

  35. Vidal J C, Klammer N. Molten chloride technology pathway to meet the US DOE sunshot initiative with Gen3 CSP. AIP Conference Proceedings, 2019, 2126(1): 080006

    Article  Google Scholar 

  36. Ding W, Bauer T. Progress in research and development of molten chloride salt technology for next generation concentrated solar power plants. Engineering (Beijing), 2021, 7(3): 334–347

    Google Scholar 

  37. D’Souza B, Zhuo W, Yang Q, et al. Impurity driven corrosion behavior of HAYNES® 230® alloy in molten chloride salt. Corrosion Science, 2021, 187: 109483

    Article  Google Scholar 

  38. Vignarooban K, Xu X, Wang K, et al. Vapor pressure and corrosivity of ternary metal-chloride molten-salt based heat transfer fluids for use in concentrating solar power systems. Applied Energy, 2015, 159: 206–213

    Article  Google Scholar 

  39. Ong T C, Sarvghad M, Lippiatt K, et al. Review of the solubility, monitoring, and purification of impurities in molten salts for energy storage in concentrated solar power plants. Renewable & Sustainable Energy Reviews, 2020, 131: 110006

    Article  Google Scholar 

  40. Cho H S, Van Zee J, Shimpalee S, et al. Dimensionless analysis for predicting Fe-Ni-Cr alloy corrosion in molten salt systems for concentrated solar power systems. Corrosion, 2016, 72(6): 742–760

    Article  Google Scholar 

  41. Garcia-Diaz B L, Olson L, Martinez-Rodriguez M, et al. High temperature electrochemical engineering and clean energy systems. Journal of the South Carolina Academy of Science, 2016, 14(1): 11–14

    Google Scholar 

  42. Sun H, Wang J Q, Tang Z, et al. Assessment of effects of Mg treatment on corrosivity of molten NaCl-KCl-MgCl2 salt with Raman and infrared spectra. Corrosion Science, 2020, 164: 108350

    Article  Google Scholar 

  43. Ding W, Gomez-Vidal J, Bonk A, et al. Molten chloride salts for next generation CSP plants: electrolytical salt purification for reducing corrosive impurity level. Solar Energy Materials and Solar Cells, 2019, 199: 8–15

    Article  Google Scholar 

  44. Zhang Z, Lu X, Yan Y, et al. The dehydration of MgCl2 · 6H2O by inhibition of hydrolysis and conversion of hydrolysate. Journal of Analytical and Applied Pyrolysis, 2019, 138: 114–119

    Article  Google Scholar 

  45. Kipouros G J, Sadoway D R. A thermochemical analysis of the production of anhydrous MgCl2. Journal of Light Metals, 2001, 1(2): 111–117

    Article  Google Scholar 

  46. Kurley J M, Halstenberg P W, McAlister A, et al. Enabling chloride salts for thermal energy storage: Implications of salt purity. RSC Advances, 2019, 9(44): 25602–25608

    Article  Google Scholar 

  47. Chen G S, Sun I W, Sienerth K D, et al. Removal of oxide impurities from alkali haloaluminate melts using carbon tetrachloride. Journal of the Electrochemical Society, 1993, 140(6): 1523–1526

    Article  Google Scholar 

  48. Zhao Y. Molten chloride thermophysical properties, chemical optimization, and purification. Technical Report, National Renewable Energy Laboratories, 2020

  49. de Bakker J, Peacey J, Davis B. Thermal decomposition studies on magnesium hydroxychlorides. Canadian Metallurgical Quarterly, 2012, 51(4): 419–423

    Article  Google Scholar 

  50. Fernández A G, Cabeza L F. Corrosion evaluation of eutectic chloride molten salt for new generation of CSP plants. Part 1: thermal treatment assessment. Journal of Energy Storage, 2020, 27:101125

    Article  Google Scholar 

  51. Kashani-Nejad S, Ng K, Harris R. Preparation of MgOHCl by controlled dehydration of MgCl2·6H2O. Metallurgical and Materials Transactions B, Process Metallurgy and Materials Processing Science, 2004, 35(2): 405–406

    Article  Google Scholar 

  52. Kipouros G J, Sadoway D R. The chemistry and electrochemistry of magnesium production. Advances in Molten Salt Chemistry, 1987, 6: 127–209

    Google Scholar 

  53. Ding W, Shi H, Jianu A, et al. Molten chloride salts for next generation concentrated solar power plants: Mitigation strategies against corrosion of structural materials. Solar Energy Materials and Solar Cells, 2019, 193: 298–313

    Article  Google Scholar 

  54. Zhao Y, Klammer N, Vidal J. Purification strategy and effect of impurities on corrosivity of dehydrated carnallite for thermal solar applications. RSC Advances, 2019, 9(71): 41664–41671

    Article  Google Scholar 

  55. Zhao Y, Vidal J. Potential scalability of a cost-effective purification method for MgCl2-containing salts for next-generation concentrating solar power technologies. Solar Energy Materials and Solar Cells, 2020, 215: 110663

    Article  Google Scholar 

  56. Alkhamis M. Stability of metals in molten chloride salt at 800 °C. Dissertation for the Master’s Degree. Tucson: The University of Arizona, 2016

    Google Scholar 

  57. Stoddard L, Andrew D, Adams S, et al. Molten salt: Concept definition and capital cost estimate. Technical Report, Allegheny Science & Technology Corporation, 2016

  58. Huang S Y, Mortzheim J, Samarov V, et al. Low cost HIP fabrication of advanced power cycle components and PM/Wrought inconel 740H weld development—Final technical report. Technical Report, GE Research, 2021

  59. Shingledecker J, de Barbadillo J, O’Donnell D, et al. Materials improvements for improved economy of high-temperature components in future Gen3 CSP systems. AIP Conference Proceedings, 2019, 2126(1): 020004

    Article  Google Scholar 

  60. Gomez-Vidal J C, Fernandez A, Tirawat R, et al. Corrosion resistance of alumina forming alloys against molten chlorides for energy production. II: Electrochemical impedance spectroscopy under thermal cycling conditions. Solar Energy Materials and Solar Cells, 2017, 166: 234–245

    Article  Google Scholar 

  61. Ding W, Shi H, Xiu Y, et al. Hot corrosion behavior of commercial alloys in thermal energy storage material of molten MgCl2/KCl/NaCl under inert atmosphere. Solar Energy Materials and Solar Cells, 2018, 184: 22–30

    Article  Google Scholar 

  62. Tristancho-Reyes J, Chacón-Nava J, Peña-Ballesteros D, et al. Hot corrosion behaviour of NiCrFeNbMoTiAl coating in molten salts at 700 °C by electrochemical techniques. International Journal of Electrochemical Science, 2011, 6: 432–441

    Article  Google Scholar 

  63. Fernández A G, Cabeza L F. Anodic protection assessment using alumina-forming alloys in chloride molten salt for CSP plants. Coatings, 2020, 10(2): 138

    Article  Google Scholar 

  64. Gomez-Vidal J C. Corrosion resistance of MCrAlX coatings in a molten chloride for thermal storage in concentrating solar power applications. npj Materials Degradation, 2017, 1(1): 1–9

    Article  Google Scholar 

  65. Ding W, Bonk A, Bauer T. Molten chloride salts for next generation CSP plants: selection of promising chloride salts & study on corrosion of alloys in molten chloride salts. AIP Conference Proceedings, 2019, 2126(1): 200014

    Article  Google Scholar 

  66. Gomez-Vidal J, Fernandez A, Tirawat R, et al. Corrosion resistance of alumina-forming alloys against molten chlorides for energy production. I: pre-oxidation treatment and isothermal corrosion tests. Solar Energy Materials and Solar Cells, 2017, 166: 222–233

    Article  Google Scholar 

  67. Chavez J M, Chaza C. Testing of a porous ceramic absorber for a volumetric air receiver. Solar Energy Materials, 1991, 24(1–4): 172–181

    Article  Google Scholar 

  68. Patil V R, Kiener F, Grylka A, et al. Experimental testing of a solar air cavity-receiver with reticulated porous ceramic absorbers for thermal processing at above 1000 °C. Solar Energy, 2021, 214: 72–85

    Article  Google Scholar 

  69. Barreto G, Canhoto P, Collares-Pereira M. Parametric analysis and optimisation of porous volumetric solar receivers made of open-cell SiC ceramic foam. Energy, 2020, 200: 117476

    Article  Google Scholar 

  70. Walker M, Armijo K M, Yellowhair J, et al. High temperature silicon carbide receiver tubes for concentrating solar power. Technical Report, Sandia National Laboratories, 2019

  71. Armijo K M, Walker M, Christian J, et al. Thermal shock resistance of multilayer silicon carbide receiver tubes for 800 °C molten salt concentrating solar power application. AIP Conference Proceedings, 2020, 2303(1): 150004

    Article  Google Scholar 

  72. Caccia M, Tabandeh-Khorshid M, Itskos G, et al. Ceramic-metal composites for heat exchangers in concentrated solar power plants. Nature, 2018, 562(7727): 406–409

    Article  Google Scholar 

  73. Xu X, Wang X, Li P, et al. Experimental test of properties of KCl-MgCl2 eutectic molten salt for heat transfer and thermal storage fluid in concentrated solar power systems. Journal of Solar Energy Engineering, 2018, 140(5): 051011

    Article  Google Scholar 

  74. Wang W Q, Qiu Y, Li M J, et al. Coupled optical and thermal performance of a fin-like molten salt receiver for the next-generation solar power tower. Applied Energy, 2020, 272: 115079

    Article  Google Scholar 

  75. He Y L, Xiao J, Cheng Z D, et al. A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector. Renewable Energy, 2011, 36(3): 976–985

    Article  Google Scholar 

  76. Qiu Y, He Y L, Li P W, et al. A comprehensive model for analysis of real-time optical performance of a solar power tower with a multi-tube cavity receiver. Applied Energy, 2017, 185: 589–603

    Article  Google Scholar 

  77. Ho C K, Mahoney A R, Ambrosini A, et al. Characterization of Pyromark 2500 for high-temperature solar receivers. In: ASME International Conference on Energy Sustainability, San Diego, CA, USA, 2012

  78. Wang W Q, Li M J, Jiang R, et al. Receiver with light-trapping nanostructured coating: A possible way to achieve high-efficiency solar thermal conversion for the next-generation concentrating solar power. Renewable Energy, 2022, 185: 159–171

    Article  Google Scholar 

  79. Coventry J, Burge P. Optical properties of Pyromark 2500 coatings of variable thicknesses on a range of materials for concentrating solar thermal applications. AIP Conference Proceedings, 2017, 1850(1): 030012

    Article  Google Scholar 

  80. Zhang K, Hao L, Du M, et al. A review on thermal stability and high temperature induced ageing mechanisms of solar absorber coatings. Renewable & Sustainable Energy Reviews, 2017, 67: 1282–1299

    Article  Google Scholar 

  81. Xu K, Du M, Hao L, et al. A review of high-temperature selective absorbing coatings for solar thermal applications. Journal of Materiomics, 2020, 6(1): 167–182

    Article  Google Scholar 

  82. Shah A A, Ungaro C, Gupta M C. High temperature spectral selective coatings for solar thermal systems by laser sintering. Solar Energy Materials and Solar Cells, 2015, 134: 209–214

    Article  Google Scholar 

  83. Dan A, Barshilia H C, Chattopadhyay K, et al. Solar energy absorption mediated by surface plasma polaritons in spectrally selective dielectric-metal-dielectric coatings: A critical review. Renewable & Sustainable Energy Reviews, 2017, 79: 1050–1077

    Article  Google Scholar 

  84. Zhang W, Wang B, Zhao C. Selective thermophotovoltaic emitter with a periodic multilayer structures designed by machine learning. ACS Applied Energy Materials, 2021, 4(2): 2004–2013

    Article  Google Scholar 

  85. Barshilia H C, Kumar P, Rajam K, et al. Structure and optical properties of Ag-Al2O3 nanocermet solar selective coatings prepared using unbalanced magnetron sputtering. Solar Energy Materials and Solar Cells, 2011, 95(7): 1707–1715

    Article  Google Scholar 

  86. Li P, Liu B, Ni Y, et al. Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion. Advanced Materials, 2015, 27(31): 4585–4591

    Article  Google Scholar 

  87. Yang J, Shen H, Yang Z, et al. Air-stability improvement of solar selective absorbers based on TiW-SiO2 cermet up to 800 °C. ACS Applied Materials & Interfaces, 2021, 13(12): 14587–14598

    Article  MathSciNet  Google Scholar 

  88. Wang X, Lee E, Xu C, et al. High-efficiency, air-stable manganese-iron oxide nanoparticle-pigmented solar selective absorber coatings toward concentrating solar power systems operating at 750 °C. Materials Today. Energy, 2021, 19: 100609

    Article  Google Scholar 

  89. Li Y, Lin C, Wu Z, et al. Solution-processed all-ceramic plasmonic metamaterials for efficient solar-thermal conversion over 100–727 °C. Advanced Materials, 2021, 33(1): 2005074

    Article  Google Scholar 

  90. Chirumamilla A, Yang Y, Salazar M H, et al. Spectrally selective emitters based on 3D Mo nanopillars for thermophotovoltaic energy harvesting. Materials Today Physics, 2021, 21: 100503

    Article  Google Scholar 

  91. Garbrecht O, Al-Sibai F, Kneer R, et al. CFD-simulation of a new receiver design for a molten salt solar power tower. Solar Energy, 2013, 90: 94–106

    Article  Google Scholar 

  92. Garbrecht O, Al-Sibai F, Kneer R, et al. Numerical investigation of a new molten salt central receiver design. In: 18th SolarPACES Conference, Marrakech, Morocco, 2012

  93. Slootweg M, Craig K, Meyer J P. A computational approach to simulate the optical and thermal performance of a novel complex geometry solar tower molten salt cavity receiver. Solar Energy, 2019, 187: 13–29

    Article  Google Scholar 

  94. Friefield J, Friedman J. Technical report No. 1: Solar thermal power systems baded on optical transmission. Technical Report, Rocketdyne Division, Rockwell International, 1974

  95. Ho C K, Christian J M, Ortega J D, et al. Reduction of radiative heat losses for solar thermal receivers. High and Low Concentrator Systems for Solar Energy Applications IX, 2014, 9175:917506

    Google Scholar 

  96. Yellowhair J, Ho C K, Ortega J D, et al. Testing and optical modeling of novel concentrating solar receiver geometries to increase light trapping and effective solar absorptance. High and Low Concentrator Systems for Solar Energy Applications X, 2015, 9559: 95590A

    Article  Google Scholar 

  97. Christian J M, Ortega J D, Ho C K, et al. Design and modeling of light-trapping tubular receiver panels. In: ASME International Conference on Energy Sustainability, Charlotte, NC, USA, 2016

  98. Ho C K, Ortega J D, Christian J M, et al. Fractal-like materials design with optimized radiative properties for high-efficiency solar energy conversion. Technical Report, Sandia National Laboratories, 2016

  99. Ortega J D, Christian J M, Ho C K. Design and testing of a novel bladed receiver. In: ASME International Conference on Energy Sustainability, Charlotte, USA, 2017

  100. Wang W Q, Qiu Y, Li M J, et al. Optical efficiency improvement of solar power tower by employing and optimizing novel fin-like receivers. Energy Conversion and Management, 2019, 184: 219–234

    Article  Google Scholar 

  101. Wang W Q, He Y L, Jiang R. A multi-scale solar receiver with peak receiver efficiency over 90% at 720 °C for the next-generation solar power tower. Renewable Energy, 2022, 200: 714–723

    Article  Google Scholar 

  102. William B, Stine M G. Power from the sun. 2022-5-2, available at website of Power from the Sun book

  103. Schmitz M, Schwarzbözl P, Buck R, et al. Assessment of the potential improvement due to multiple-apertures in central receiver systems with secondary concentrators. Solar Energy, 2006, 80(1): 111–120

    Article  Google Scholar 

  104. Li L, Wang B, Pye J, et al. Optical analysis of a multi-aperture solar central receiver system for high-temperature concentrating solar applications. Optics Express, 2020, 28(25): 37654–37668

    Article  Google Scholar 

  105. McEnaney K, Weinstein L, Kraemer D, et al. Aerogel-based solar thermal receivers. Nano Energy, 2017, 40: 180–186

    Article  Google Scholar 

  106. Zhao L, Bhatia B, Yang S, et al. Harnessing heat beyond 200°C from unconcentrated sunlight with nonevacuated transparent aerogels. ACS Nano, 2019, 13(7): 7508–7516

    Article  Google Scholar 

  107. Li Q, Zhang Y, Wen Z X, et al. An evacuated receiver partially insulated by a solar transparent aerogel for parabolic trough collector. Energy Conversion and Management, 2020, 214: 112911

    Article  Google Scholar 

  108. Berquist Z J, Turaczy K K, Lenert A. Plasmon-enhanced greenhouse selectivity for high-temperature solar thermal energy conversion. ACS Nano, 2020, 14(10): 12605–12613

    Article  Google Scholar 

  109. Li Y, Xu X, Wang X, et al. Survey and evaluation of equations for thermophysical properties of binary/ternary eutectic salts from NaCl, KCl, MgCl2, CaCl2, ZnCl2 for heat transfer and thermal storage fluids in CSP. Solar Energy, 2017, 152: 57–79

    Article  Google Scholar 

  110. Li C J, Li P W, Wang K, et al. Survey of properties of key single and mixture halide salts for potential application as high temperature heat transfer fluids for concentrated solar thermal power systems. AIMS Energy, 2014, 2(2): 133–157

    Article  Google Scholar 

  111. Wang X, Rincon J D, Li P, et al. Thermophysical properties experimentally tested for NaCl-KCl-MgCl2 eutectic molten salt as a next-generation high-temperature heat transfer fluids in concentrated solar power systems. Journal of Solar Energy Engineering, 2021, 143(4): 041005

    Article  Google Scholar 

  112. Robelin C, Chartrand P, Eriksson G. A density model for multicomponent liquids based on the modified quasichemical model: Application to the NaCl-KCl-MgCl2-CaCl2 system. Metallurgical and Materials Transactions. B, Process Metallurgy and Materials Processing Science, 2007, 38(6): 869–879

    Article  Google Scholar 

  113. Robelin C, Chartrand P. A density model based on the modified quasichemical model and applied to the NaF-AlF3-CaF2-Al2O3 electrolyte. Metallurgical and Materials Transactions. B, Process Metallurgy and Materials Processing Science, 2007, 38(6): 881–892

    Article  Google Scholar 

  114. Ouzilleau P, Robelin C, Chartrand P. A density model based on the modified quasichemical model and applied to the (NaCl+KCl+ZnCl2) liquid. Journal of Chemical Thermodynamics, 2012, 47: 171–176

    Article  Google Scholar 

  115. Villada C, Ding W, Bonk A, et al. Engineering molten MgCl2-KCl-NaCl salt for high-temperature thermal energy storage: Review on salt properties and corrosion control strategies. Solar Energy Materials and Solar Cells, 2021, 232: 111344

    Article  Google Scholar 

  116. Yu Y S, Tao Y B, He Y L. Molecular dynamics simulation of thermophysical properties of NaCl-SiO2 based molten salt composite phase change materials. Applied Thermal Engineering, 2020, 166: 114628

    Article  Google Scholar 

  117. Qiu Y, Li M J, Li M J, et al. Numerical and experimental study on heat transfer and flow features of representative molten salts for energy applications in turbulent tube flow. International Journal of Heat and Mass Transfer, 2019, 135: 732–745

    Article  Google Scholar 

  118. Martinek J, Jape S, Turchi C S. Evaluation of external tubular configurations for a high-temperature chloride molten salt solar receiver operating above 700 °C. Solar Energy, 2021, 222: 115–128

    Article  Google Scholar 

  119. Wang Q, Huang J, Shen Z, et al. Negative thermal-flux phenomenon and regional solar absorbing coating improvement strategy for the next-generation solar power tower. Energy Conversion and Management, 2021, 247: 114756

    Article  Google Scholar 

  120. Xu L, Stein W, Kim J S, et al. Three-dimensional transient numerical model for the thermal performance of the solar receiver. Renewable Energy, 2018, 120: 550–566

    Article  Google Scholar 

  121. Pacio J, Singer C, Wetzel T, et al. Thermodynamic evaluation of liquid metals as heat transfer fluids in concentrated solar power plants. Applied Thermal Engineering, 2013, 60(1–2): 295–302

    Article  Google Scholar 

  122. Benoit H, Spreafico L, Gauthier D, et al. Review of heat transfer fluids in tube-receivers used in concentrating solar thermal systems: Properties and heat transfer coefficients. Renewable & Sustainable Energy Reviews, 2016, 55: 298–315

    Article  Google Scholar 

  123. Fritsch A, Frantz C, Uhlig R. Techno-economic analysis of solar thermal power plants using liquid sodium as heat transfer fluid. Solar Energy, 2019, 177: 155–162

    Article  Google Scholar 

  124. Lipiński W, Abbasi-Shavazi E, Chen J, et al. Progress in heat transfer research for high-temperature solar thermal applications. Applied Thermal Engineering, 2021, 184: 116137

    Article  Google Scholar 

  125. Pacio J, Wetzel T. Assessment of liquid metal technology status and research paths for their use as efficient heat transfer fluids in solar central receiver systems. Solar Energy, 2013, 93: 11–22

    Article  Google Scholar 

  126. Flesch J, Niedermeier K, Fritsch A, et al. Liquid metals for solar power systems. IOP Conference Series. Materials Science and Engineering, 2017, 228(1): 012012

    Article  Google Scholar 

  127. Turchi C S, Libby C, Pye J, et al. Molten salt vs. liquid sodium receiver selection using the analytic hierarchy process. AIP Conference Proceedings, 2022, 2445: 110016

    Article  Google Scholar 

  128. Turchi C, Gage S, Martinek J, et al. CSP Gen3: Liquid-phase pathway to SunShot. Renewable Energy Laboratories Technical Report, 2021

  129. SNL. Final report sodium solar receiver experiment. Sandia National Laboratories Technical Report, 1982

  130. Kesselring P, Selvage C S. The IEA/SSPS solar thermal power plants volume1: Central receiver system. Springer, Berlin, Germany, 1986

    Book  Google Scholar 

  131. Casal F G. Solar thermal power plants: achievements and lessons learned exemplified by the SSPS project in Almeria/Spain. Springer Science & Business Media, 2012

  132. Heinzel A, Hering W, Konys J, et al. Liquid metals as efficient high-temperature heat-transport fluids. Energy Technology (Weinheim), 2017, 5(7): 1026–1036

    Article  Google Scholar 

  133. Bartos N, Fisher J, Want A. Experiences from using molten sodium metal as heat transfer fluid in concentrating solar thermal power systems. Proceedings of Asia-Pacific Solar Research Conference, Brisbane, Australia, 2015

  134. Coventry J, Andraka C, Pye J, et al. A review of sodium receiver technologies for central receiver solar power plants. Solar Energy, 2015, 122: 749–762

    Article  Google Scholar 

  135. Deguchi Y, Muranaka R, Kamimoto T, et al. Reaction path and product analysis of sodium-water chemical reactions using laser diagnostics. Applied Thermal Engineering, 2017, 114: 1319–1324

    Article  Google Scholar 

  136. Armijo K M, Andraka C E. Phenomenological studies on sodium for CSP applications: A safety review. AIP Conference Proceedings, 2016, 1734(1): 040001

    Article  Google Scholar 

  137. Guo Q, Chen Z, Mao L, et al. Preliminary source term and consequence assessment of primary cover gas leakage accident for CLEAR-I. Progress in Nuclear Energy, 2015, 78: 136–140

    Article  Google Scholar 

  138. Braid T, Harper H, Wilson R. Operation of cover-gas system during SLSF tests. Argonne National Laboratories Technical Report, 1982

  139. Nur K, Laurent B, Thierry G, et al. The role of powder physicochemical properties on the extinction performance of an extinguishing powder for sodium fires. Nuclear Engineering and Design, 2019, 346: 24–34

    Article  Google Scholar 

  140. Chikazawa Y, Katoh A, Yamamoto T, et al. Secondary sodium fire measures in JSFR. Nuclear Technology, 2016, 196(1): 61–73

    Article  Google Scholar 

  141. Malet J. Ignition and combustion of sodium, fire consequences, extinguishment and prevention. In: International Atomic Energy Agency, International Working Group on Fast Reactors, Vienna, Austria, 1996

  142. Sarvghad M, Delkasar Maher S, Collard D, et al. Materials compatibility for the next generation of concentrated solar power plants. Energy Storage Materials, 2018, 14: 179–198

    Article  Google Scholar 

  143. Lai G Y. High-temperature corrosion and materials applications. In: ASM international, Ohio, US, 2007

    Book  Google Scholar 

  144. Conroy T, Collins M N, Grimes R. A review of steady-state thermal and mechanical modelling on tubular solar receivers. Renewable & Sustainable Energy Reviews, 2020, 119: 109591

    Article  Google Scholar 

  145. Zhang J, Kapernick R. Oxygen chemistry in liquid sodium-potassium systems. Progress in Nuclear Energy, 2009, 51(4–5): 614–623

    Article  Google Scholar 

  146. Mangus D, Napora A, Briggs S, et al. Design and demonstration of a laboratory-scale oxygen controlled liquid sodium facility. Nuclear Engineering and Design, 2021, 378: 111093

    Article  Google Scholar 

  147. Hemanath M, Meikandamurthy C, Kumar A A, et al. Theoretical and experimental performance analysis for cold trap design. Nuclear Engineering and Design, 2010, 240(10): 2737–2744

    Article  Google Scholar 

  148. Onea A, Hering W, Lux M, et al. Numerical optimization of cold trap designs for the Karlsruhe Sodium Laboratory. International Journal of Heat and Mass Transfer, 2017, 113: 984–999

    Article  Google Scholar 

  149. Onea A, Lux M, Hering W, et al. Design, optimization and layout of a compact cold trap with high efficient heat recovery by a helical coil for the Karlsruhe Sodium Laboratory. International Journal of Heat and Mass Transfer, 2017, 113: 1000–1011

    Article  Google Scholar 

  150. Yvon P. Structural Materials for Generation IV Nuclear Reactors. Woodhead Publishing, 2016

  151. Hering W, Onea A, Jianu A, et al. Liquid metals, materials and safety measures to progress to CSP 2.0. AIP Conference Proceedings, 2019, 2126(1): 080002

    Article  Google Scholar 

  152. Deng Y, Jiang Y, Liu J. Liquid metal technology in solar power generation-basics and applications. Solar Energy Materials and Solar Cells, 2021, 222: 110925

    Article  Google Scholar 

  153. Müller-Trefzer F, Niedermeier K, Fellmoser F, et al. Experimental results from a high heat flux solar furnace with a molten metal-cooled receiver SOMMER. Solar Energy, 2021, 221: 176–184

    Article  Google Scholar 

  154. Flesch J, Fritsch A, Cammi G, et al. Construction of a test facility for demonstration of a liquid lead-bismuth-cooled 10 kW thermal receiver in a solar furnace arrangement-SOMMER. Energy Procedia, 2015, 69: 1259–1268

    Article  Google Scholar 

  155. Alchagirov B B, Shamparov T M, Mozgovoi A G. Experimental investigation of the density of molten lead-bismuth eutectic. High Temperature, 2003, 41(2): 210–215

    Article  Google Scholar 

  156. Mwesigye A, Yılmaz İ H. Thermal and thermodynamic benchmarking of liquid heat transfer fluids in a high concentration ratio parabolic trough solar collector system. Journal of Molecular Liquids, 2020, 319: 114151

    Article  Google Scholar 

  157. Conroy T, Collins M N, Fisher J, et al. Thermohydraulic analysis of single phase heat transfer fluids in CSP solar receivers. Renewable Energy, 2018, 129: 150–167

    Article  Google Scholar 

  158. Flesch J, Marocco L, Fritsch A, et al. Entropy generation minimization analysis of solar salt, sodium, and lead-bismuth eutectic as high temperature heat transfer fluids. Journal of Heat Transfer, 2020, 142(4): 042103

    Article  Google Scholar 

  159. Ho C K. Advances in central receivers for concentrating solar applications. Solar Energy, 2017, 152: 38–56

    Article  Google Scholar 

  160. Zhang J. A review of steel corrosion by liquid lead and lead-bismuth. Corrosion Science, 2009, 51(6): 1207–1227

    Article  Google Scholar 

  161. Ilinčev G. Research results on the corrosion effects of liquid heavy metals Pb, Bi and Pb-Bi on structural materials with and without corrosion inhibitors. Nuclear Engineering and Design, 2002, 217(1–2): 167–177

    Article  Google Scholar 

  162. Frazer D, Stergar E, Cionea C, et al. Liquid metal as a heat transport fluid for thermal solar power applications. Energy Procedia, 2014, 49: 627–636

    Article  Google Scholar 

  163. Lorenzin N, Abanades A. A review on the application of liquid metals as heat transfer fluid in Concentrated Solar Power technologies. International Journal of Hydrogen Energy, 2016, 41(17): 6990–6995

    Article  Google Scholar 

  164. Weisenburger A, Müller G, Heinzel A, et al. Corrosion, Al containing corrosion barriers and mechanical properties of steels foreseen as structural materials in liquid lead alloy cooled nuclear systems. Nuclear Engineering and Design, 2011, 241(5): 1329–1334

    Article  Google Scholar 

  165. Shi H, Jianu A, Weisenburger A, et al. Corrosion resistance and microstructural stability of austenitic Fe-Cr-Al-Ni model alloys exposed to oxygen-containing molten lead. Journal of Nuclear Materials, 2019, 524: 177–190

    Article  Google Scholar 

  166. Wei X, Jin J, Jiang Z, et al. FeCrMoWCBY metallic glass with high corrosion resistance in molten lead-bismuth eutectic alloy. Corrosion Science, 2021, 190: 109688

    Article  Google Scholar 

  167. Fetzer R, Weisenburger A, Jianu A, et al. Oxide scale formation of modified FeCrAl coatings exposed to liquid lead. Corrosion Science, 2012, 55: 213–218

    Article  Google Scholar 

  168. Ban N, Kamihori T, Takamuku H. A study of the behavior of volatiles in the float process. Journal of Non-Crystalline Solids, 2004(345-346), 777–781

  169. Li L Y, Lin H J, Han J J, et al. Influence of spout lip set-height on flow behavior during the glass float process. Journal of Non-Crystalline Solids, 2017, 472: 46–54

    Article  Google Scholar 

  170. Shou P, Hongcan R, Xin C, et al. Continuous forming of ultrathin glass by float process. International Journal of Applied Glass Science, 2019, 10(3): 275–286

    Article  Google Scholar 

  171. DeAngelis F, Seyf H R, Berman R, et al. Design of a high temperature (1350 °C) solar receiver based on a liquid metal heat transfer fluid: Sensitivity analysis. Solar Energy, 2018, 164: 200–209

    Article  Google Scholar 

  172. Zhang Y, Cai Y, Hwang S, et al. Containment materials for liquid tin at 1350 °C as a heat transfer fluid for high temperature concentrated solar power. Solar Energy, 2018, 164: 47–57

    Article  Google Scholar 

  173. Amy C, Budenstein D, Bagepalli M, et al. Pumping liquid metal at high temperatures up to 1673 Kelvin. Nature, 2017, 550(7675): 199–203

    Article  Google Scholar 

  174. Fink J, Leibowitz L. Thermodynamic and transport properties of sodium liquid and vapor. Argonne National Laboratories Technical Report, 1995

  175. Sobolev V. Thermophysical properties of lead and lead-bismuth eutectic. Journal of Nuclear Materials, 2007, 362(2–3): 235–247

    Article  Google Scholar 

  176. Assael M J, Kalyva A E, Antoniadis K D, et al. Reference data for the density and viscosity of liquid copper and liquid tin. Journal of Physical and Chemical Reference Data, 2010, 39(3): 033105

    Article  Google Scholar 

  177. Humrickhouse P W. An equation of state and compendium of thermophysical properties of liquid tin, a prospective plasma-facing material. IEEE Transactions on Plasma Science, 2019, 47(7): 3374–3379

    Article  Google Scholar 

  178. Chapman T W. The heat capacity of liquid metals. Materials Science and Engineering, 1966, 1(1): 65–69

    Article  Google Scholar 

  179. Savchenko I V, Stankus S V, Agadjanov A S. Measurement of liquid tin heat transfer coefficients within the temperature range of 506–1170 K. High Temperature, 2011, 49(4): 506–511

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51721004 and 51888103), and the Research Plan of Shaanxi Province (Nos. 2022GXLH-01-04 and 2019JCW-09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Ling He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, YL., Wang, W., Jiang, R. et al. Liquid-based high-temperature receiver technologies for next-generation concentrating solar power: A review of challenges and potential solutions. Front. Energy 17, 16–42 (2023). https://doi.org/10.1007/s11708-023-0866-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-023-0866-8

Keywords

Navigation