Skip to main content
Log in

Design and analysis of electrothermal metasurfaces

  • Research Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

Electrothermal metasurfaces have garnered considerable attention owing to their ability to dynamically control thermal infrared radiation. Although previous studies were mainly focused on metasurfaces with infinite unit cells, in practice, the finite-size effect can be a critical design factor for developing thermal metasurfaces with fast response and broad temperature uniformity. Here, we study the thermal metasurfaces consisting of gold nanorods with a finite array size, which can achieve a resonance close to that of the infinite case with only several periods. More importantly, such a small footprint due to the finite array size yields response time down to a nanosecond level. Furthermore, the number of the unit cells in the direction perpendicular to the axis of nanorods is found to be insensitive to the resonance and response time; thus, providing a tunable aspect ratio that can boost the temperature uniformity in the sub-Kelvin level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu B, Gong W, Yu B, et al. Perfect thermal emission by nanoscale transmission line resonators. Nano Letters, 2017, 17(2): 666–672

    Article  Google Scholar 

  2. Li J, Li Z, Shen S. Degenerate quasi-normal mode theory for near-field radiation between plasmonic structures. Optics Express, 2020, 28(23): 34123–34136

    Article  Google Scholar 

  3. Li J, Li Z, Liu X, et al. Active control of thermal emission by graphene-nanowire coupled plasmonic metasurfaces. Physical Review B, 2022, 106: 115416

    Article  Google Scholar 

  4. Lu F, Liu B, Shen S. Infrared wavefront control based on graphene metasurfaces. Advanced Optical Materials, 2014, 2(8): 794–799

    Article  Google Scholar 

  5. Li J, Liu B, Shen S. Graphene surface plasmons mediated thermal radiation. Journal of Optics, 2018, 20(2): 024011

    Article  Google Scholar 

  6. Greffet J J, Carminati R, Joulain K, et al. Coherent emission of light by thermal sources. Nature, 2002, 416(6876): 61–64

    Article  Google Scholar 

  7. Baranov D G, Xiao Y, Nechepurenko I A, et al. Nanophotonic engineering of far-field thermal emitters. 2018: arXiv: 1806.03372

  8. Li W, Fan S. Nanophotonic control of thermal radiation for energy applications. Optics Express, 2018, 26(12): 15995

    Article  Google Scholar 

  9. Ren Z, Chang Y, Ma Y, et al. Leveraging of MEMS technologies for optical metamaterials applications. Advanced Optical Materials, 2020, 8(3): 1900653

    Article  Google Scholar 

  10. Li Y, Li W, Han T, et al. Transforming heat transfer with thermal metamaterials and devices. Nature Reviews. Materials, 2021, 6(6): 488–507

    Google Scholar 

  11. Lin Y, Xu Z. Reconfigurable metamaterials for optoelectronic applications. International Journal of Optomechatronics, 2020, 14(1): 78–93

    Article  Google Scholar 

  12. Miller D A B, Zhu L, Fan S. Universal modal radiation laws for all thermal emitters. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(17): 4336–4341

    Article  Google Scholar 

  13. Inoue T, Zoysa M D, Asano T, et al. Realization of dynamic thermal emission control. Nature Materials, 2014, 13(10): 928–931

    Article  Google Scholar 

  14. Brar V W, Sherrott M C, Jang M S, et al. Electronic modulation of infrared radiation in graphene plasmonic resonators. Nature Communications, 2015, 6(1): 7032

    Article  Google Scholar 

  15. Park J H, Han S, Nagpal P, et al. Observation of thermal beaming from tungsten and molybdenum bull’s eyes. ACS Photonics, 2016, 3(3): 494–500

    Article  Google Scholar 

  16. Lochbaum A, Fedoryshyn Y, Dorodnyy A, et al. On-chip narrowband thermal emitter for mid-IR optical gas sensing. ACS Photonics, 2017, 4(6): 1371–1380

    Article  Google Scholar 

  17. Tittl A, Michel A K U, Schäferling M, et al. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability. Advanced Materials, 2015, 27(31): 4597–4603

    Article  Google Scholar 

  18. Lenert A, Bierman D M, Nam Y, et al. A nanophotonic solar thermophotovoltaic device. Nature Nanotechnology, 2014, 9(2): 126–130

    Article  Google Scholar 

  19. Bierman D M, Lenert A, Chan W R, et al. Enhanced photovoltaic energy conversion using thermally based spectral shaping. Nature Energy, 2016, 1(6): 16068

    Article  Google Scholar 

  20. Liu X, Padilla W J. Dynamic manipulation of infrared radiation with MEMS metamaterials. Advanced Optical Materials, 2013, 1(8): 559–562

    Article  Google Scholar 

  21. Miyazaki H T, Kasaya T, Oosato H, et al. Ultraviolet-nanoimprinted packaged metasurface thermal emitters for infrared CO2 sensing. Science and Technology of Advanced Materials, 2015, 16(3): 035005

    Article  Google Scholar 

  22. Park J, Kang J H, Liu X, et al. Dynamic thermal emission control with InAs-based plasmonic metasurfaces. Science Advances, 2018, 4(12): eaat3163

    Article  Google Scholar 

  23. Zhang Y, Fowler C, Liang J, et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nature Nanotechnology, 2021, 16(6): 661–666

    Article  Google Scholar 

  24. Wang Y, Landreman P, Schoen D, et al. Electrical tuning of phase-change antennas and metasurfaces. Nature Nanotechnology, 2021, 16(6): 667–672

    Article  Google Scholar 

  25. Abdollahramezani S, Hemmatyar O, Taghinejad M, et al. Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency. Nature Communications, 2022, 13(1): 1696

    Article  Google Scholar 

  26. Li J, Wuenschell J, Li Z, et al. Fiber coupled near-field thermoplasmonic emission from gold nanorods at 1100 K. Small. Small, 2021, 17(17): e2007274

    Article  Google Scholar 

  27. Li J, Yu B, Shen S. Scale law of far-field thermal radiation from plasmonic metasurfaces. Physical Review Letters, 2020, 124(13): 137401

    Article  Google Scholar 

  28. Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 1994, 114(2): 185–200

    Article  MathSciNet  MATH  Google Scholar 

  29. Li Z, Li J, Liu X, et al. Wiener chaos expansion method for thermal radiation from inhomogeneous structures. Physical Review. B, 2021, 104(19): 195426

    Article  Google Scholar 

  30. Grant J, Ma Y, Saha S, et al. Polarization insensitive, broadband terahertz metamaterial absorber. Optics Letters, 2011, 36(17): 3476–3478

    Article  Google Scholar 

  31. Hasan D, Pitchappa P, Wang J, et al. Novel CMOS-compatible Mo−AlN−Mo platform for metamaterial-based mid-IR absorber. ACS Photonics, 2017, 4(2): 302–315

    Article  Google Scholar 

  32. Lochbaum A, Dorodnyy A, Koch U, et al. Compact mid-infrared gas sensing enabled by an all-metamaterial design. Nano Letters, 2020, 20(6): 4169–4176

    Article  Google Scholar 

  33. Li D, Zhou H, Hui X, et al. Multifunctional chemical sensing platform based on dual-resonant infrared plasmonic perfect absorber for on-chip detection of poly(ethyl cyanoacrylate). Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2021, 8(20): 2101879

    Google Scholar 

  34. Wojszvzyk L, Nguyen A, Coutrot A L, et al. An incandescent metasurface for quasimonochromatic polarized mid-wave infrared emission modulated beyond 10 MHz. Nature Communications, 2021, 12(1): 1492

    Article  Google Scholar 

  35. Mohammadi Estakhri N, Argyropoulos C, Alù A. Graded metascreens to enable a new degree of nanoscale light management. Philosophical Transactions —Royal Society. Mathematical, Physical, and Engineering Sciences, 2015, 373(2049): 20140351

    Google Scholar 

  36. Tsitsas N L, Valagiannopoulos C A. Anomalous reflection of visible light by all-dielectric gradient metasurfaces. Journal of the Optical Society of America. B, Optical Physics, 2017, 34(7): D1

    Article  Google Scholar 

  37. Liu X, Padilla W J. Reconfigurable room temperature metamaterial infrared emitter. Optica, 2017, 4(4): 430–433

    Article  Google Scholar 

  38. Kang D D, Inoue T, Asano T, et al. Electrical modulation of narrowband GaN/AlGaN quantum-well photonic crystal thermal emitters in mid-wavelength infrared. ACS Photonics, 2019, 6(6): 1565–1571

    Article  Google Scholar 

  39. Yao Y, Kats M A, Genevet P, et al. Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Letters, 2013, 13(3): 1257–1264

    Article  Google Scholar 

  40. Yao Y, Shankar R, Kats M A, et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Letters, 2014, 14(11): 6526–6532

    Article  Google Scholar 

  41. Fan K, Suen J, Wu X, et al. Graphene metamaterial modulator for free-space thermal radiation. Optics Express, 2016, 24(22): 25189–25201

    Article  Google Scholar 

  42. Zeng B, Huang Z, Singh A, et al. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light, Science & Applications, 2018, 7(1): 51

    Article  Google Scholar 

  43. Shiue R J, Gao Y, Tan C, et al. Thermal radiation control from hot graphene electrons coupled to a photonic crystal nanocavity. Nature Communications, 2019, 10(1): 109

    Article  Google Scholar 

  44. Mahlmeister N H, Lawton L M, Luxmoore I J, et al. Modulation characteristics of graphene-based thermal emitters. Applied Physics Express, 2016, 9(1): 012105

    Article  Google Scholar 

  45. Shi C, Mahlmeister N H, Luxmoore I J, et al. Metamaterial-based graphene thermal emitter. Nano Research, 2018, 11(7): 3567–3573

    Article  Google Scholar 

Download references

Acknowledgments

This study was primarily supported by the Defense Threat Reduction Agency (Grant No. HDTRA1-19-1-0028) and partially funded by the National Science Foundation (Grant No. CBET-1931964). X. L., Z. L., and Z. W. contributed equally; X. L. and Z. L. identified the problem; Z. L. and X. L. conducted the optical simulations; Z. W. and X. L. conducted the thermal simulations; X. L. and Z. L. prepared the manuscript with the input from Z. W. and H. S. Y.; S. S. supervised the research. All authors have approved the final version of the manuscript. The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Li, Z., Wang, Z. et al. Design and analysis of electrothermal metasurfaces. Front. Energy 17, 134–140 (2023). https://doi.org/10.1007/s11708-022-0841-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-022-0841-9

Keywords

Navigation