Skip to main content
Log in

Organic conjugated polymers and polymer dots as photocatalysts for hydrogen production

  • Mini Review
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

Owing to the outstanding characteristics of tailorable electronic and optical properties, semiconducting polymers have attracted considerable attention in recent years. Among them, organic polymer dots process large breadth of potential synthetic diversity are the representative of photocatalysts for hydrogen production, which presents both an opportunity and a challenge. In this mini-review, first, the organic polymer photocatalysts were introduced. Then, recent reports on polymer dots which showed a superior photocatalytic activity and a robust stability under visible-light irradiation, for hydrogen production were summarized. Finally, challenges and outlook on using organic polymer dots-based photocatalysts from hydrogen production were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang Y, Vogel A, Sachs M, et al. Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. Nature Energy, 2019, 4(9): 746–760

    Article  Google Scholar 

  2. Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009, 38(1): 253–278

    Google Scholar 

  3. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38

    Article  Google Scholar 

  4. Zou Z, Ye J, Sayama K, Arakawa H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 2001, 414(6864): 625–627

    Article  Google Scholar 

  5. Turner J A. Sustainable hydrogen production. Science, 2004, 305 (5686): 972–974

    Article  Google Scholar 

  6. Chen C, Ma W, Zhao J. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chemical Society Reviews, 2010, 39(11): 4206–4219

    Article  Google Scholar 

  7. Fajrina N, Tahir M. A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. International Journal of Hydrogen Energy, 2019, 44(2): 540–577

    Article  Google Scholar 

  8. Zeng L, Guo X, He C, et al. Metal-organic frameworks: versatile materials for heterogeneous photocatalysis. ACS Catalysis, 2016, 6(11): 7935–7947

    Article  Google Scholar 

  9. Maeda K, Teramura K, Lu D, et al. Photocatalyst releasing hydrogen from water. Nature, 2006, 440(7082): 295

    Article  Google Scholar 

  10. Xie J, Shevlin S A, Ruan Q, et al. Efficient visible light-driven water oxidation and proton reduction by an ordered covalent triazine-based framework. Energy & Environmental Science, 2018, 11(6): 1617–1624

    Article  Google Scholar 

  11. Schultz D M, Yoon T P. Solar synthesis: prospects in visible light photocatalysis. Science, 2014, 343(6174): 1239176

    Article  Google Scholar 

  12. Xiao J D, Han L, Luo J, et al. Integration of plasmonic effects and schottky junctions into metal-organic framework composites: steering charge flow for enhanced visible-light photocatalysis. Angewandte Chemie International Edition, 2018, 57(4): 1103–1107

    Article  Google Scholar 

  13. Jin H, Liu X, Chen S, et al. Heteroatom-doped transition metal electrocatalysts for hydrogen evolution reaction. ACS Energy Letters, 2019, 4(4): 805–810

    Article  Google Scholar 

  14. Lu Q, Yu Y, Ma Q, et al. 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Advanced Materials, 2016, 28(10): 1917–1933

    Article  Google Scholar 

  15. Zhang N, Wang L, Wang H, et al. Self-assembled one-dimensional porphyrin nanostructures with enhanced photocatalytic hydrogen generation. Nano Letters, 2018, 18(1): 560–566

    Article  Google Scholar 

  16. Kargar A, Jing Y, Kim S J, et al. ZnO/CuO heterojunction branched nanowires for photoelectrochemical hydrogen generation. ACS Nano, 2013, 7(12): 11112–11120

    Article  Google Scholar 

  17. Tao X, Zhao Y, Mu L, et al. Bismuth tantalum oxyhalogen: a promising candidate photocatalyst for solar water splitting. Advanced Energy Materials, 2018, 8(1): 1701392

    Article  Google Scholar 

  18. Woods D J, Sprick R S, Smith C L, et al. A solution-processable polymer photocatalyst for hydrogen evolution from water. Advanced Energy Materials, 2017, 7(22): 1700479

    Article  Google Scholar 

  19. Kuecken S, Acharjya A, Zhi L, et al. Fast tuning of covalent triazine frameworks for photocatalytic hydrogen evolution. Chemical Communications, 2017, 53(43): 5854–5857

    Article  Google Scholar 

  20. Chen H, Zheng X, Li Q, et al. An amorphous precursor route to the conformable oriented crystallization of CH3NH3PbBr3 in mesoporous scaffolds: toward efficient and thermally stable carbon-based perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2016, 4(33): 12897–12912

    Article  Google Scholar 

  21. Zhou J, Lei Y, Ma C, et al. A (001) dominated conjugated polymer with high-performance of hydrogen evolution under solar light irradiation. Chemical Communications, 2017, 53(76): 10536–10539

    Article  Google Scholar 

  22. Wang X, Maeda K, Chen X, et al. Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. Journal of the American Chemical Society, 2009, 131(5): 1680–1681

    Article  Google Scholar 

  23. Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 2009, 8(1): 76–80

    Article  Google Scholar 

  24. Cao S, Yu J. g-C3N4-based photocatalysts for hydrogen generation. Journal of Physical Chemistry Letters, 2014, 5(12): 2101–2107

    Article  Google Scholar 

  25. Chen D, Wang K, Hong W, et al. Visible light photoactivity enhancement via CuTCPP hybridized g-C3N4 nanocomposite. Applied Catalysis B: Environmental, 2015, 166–167: 366–373

    Article  Google Scholar 

  26. Schwinghammer K, Tuffy B, Mesch M B, et al. Triazine-based carbon nitrides for visible-light-driven hydrogen evolution. Angewandte Chemie International Edition, 2013, 52(9): 2435–2439

    Article  Google Scholar 

  27. Masih D, Ma Y, Rohani S. Graphitic C3N4 based noble-metal-free photocatalyst systems: a review. Applied Catalysis B: Environmental, 2017, 206: 556–588

    Article  Google Scholar 

  28. Zhang M, Xu J, Zong R, et al. Enhancement of visible light photocatalytic activities via porous structure of g-C3N4. Applied Catalysis B: Environmental, 2014, 147: 229–235

    Article  Google Scholar 

  29. Guo Y, Chu S, Yan S, et al. Developing a polymeric semiconductor photocatalyst with visible light response. Chemical Communications, 2010, 46(39): 7325–7327

    Article  Google Scholar 

  30. Xing W, Tu W, Han Z, et al. Template-induced high-crystalline g-C3N4 nanosheets for enhanced photocatalytic H2 evolution. ACS Energy Letters, 2018, 3(3): 514–519

    Article  Google Scholar 

  31. Zhang G, Lan Z A, Wang X. Conjugated polymers: catalysts for photocatalytic hydrogen evolution. Angewandte Chemie International Edition, 2016, 55(51): 15712–15727

    Article  Google Scholar 

  32. Vyas V S, Lau V W, Lotsch B V. Soft photocatalysis: organic polymers for solar fuel production. Chemistry of Materials, 2016, 28(15): 5191–5204

    Article  Google Scholar 

  33. Yu J, Rong Y, Kuo C T, et al. Recent advances in the development of highly luminescent semiconducting polymer dots and nanoparticles for biological imaging and medicine. Analytical Chemistry, 2017, 89(1): 42–56

    Article  Google Scholar 

  34. Li K, Liu B. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chemical Society Reviews, 2014, 43(18): 6570–6597

    Article  Google Scholar 

  35. Guo L, Ge J, Wang P. Polymer dots as effective phototheranostic agents. Photochemistry and Photobiology, 2018, 94(5): 916–934

    Article  Google Scholar 

  36. Feng L, Zhu C, Yuan H, et al. Conjugated polymer nanoparticles: preparation, properties, functionalization and biological applications. Chemical Society Reviews, 2013, 42(16): 6620–6633

    Article  Google Scholar 

  37. Shirakawa H, Louis E J, MacDiarmid A G, et al. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. Journal of the Chemical Society. Chemical Communications, 1977, (16): 578–580

  38. Chiang C K, Fincher C R, Park Y W, et al. Electrical conductivity in doped polyacetylene. Physical Review Letters, 1977, 39(17): 1098–1101

    Article  Google Scholar 

  39. Wu C, Chiu D T. Highly fluorescent semiconducting polymer dots for biology and medicine. Angewandte Chemie International Edition, 2013, 52(11): 3086–3109

    Article  Google Scholar 

  40. Pei Q, Yu G, Zhang C, et al. Polymer light-emitting electrochemical cells. Science, 1995, 269(5227): 1086–1088

    Article  Google Scholar 

  41. Friend R H, Gymer R W, Holmes A B, et al. Electroluminescence in conjugated polymers. Nature, 1999, 397(6715): 121–128

    Article  Google Scholar 

  42. Müller C D, Falcou A, Reckefuss N, et al. Multi-colour organic light-emitting displays by solution processing. Nature, 2003, 421(6925): 829–833

    Article  Google Scholar 

  43. Wu H, Ying L, Yang W, et al. Progress and perspective of polymer white light-emitting devices and materials. Chemical Society Reviews, 2009, 38(12): 3391–3400

    Article  Google Scholar 

  44. Yu G, Gao J, Hummelen J C, et al. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270(5243): 1789–1791

    Article  Google Scholar 

  45. Günes S, Neugebauer H, Sariciftci N S. Conjugated polymer-based organic solar cells. Chemical Reviews, 2007, 107(4): 1324–1338

    Article  Google Scholar 

  46. Burroughes J H, Jones C A, Friend R H. New semiconductor device physics in polymer diodes and transistors. Nature, 1988, 335(6186): 137–141

    Article  Google Scholar 

  47. Yang Y, Heeger A J. A new architecture for polymer transistors. Nature, 1994, 372(6504): 344–346

    Article  Google Scholar 

  48. Yan H, Chen Z, Zheng Y, et al. A high-mobility electron-transporting polymer for printed transistors. Nature, 2009, 457 (7230): 679–686

    Article  Google Scholar 

  49. Zhang K, Monteiro M J, Jia Z. Stable organic radical polymers: synthesis and applications. Polymer Chemistry, 2016, 7(36): 5589–5614

    Article  Google Scholar 

  50. Reis M H, Leibfarth F A, Pitet L M. Polymerizations in continuous flow: recent advances in the synthesis of diverse polymeric materials. ACS Macro Letters, 2020, 9(1): 123–133

    Article  Google Scholar 

  51. Sprick R S, Jiang J X, Bonillo B, et al. Tunable organic photocatalysts for visible-light-driven hydrogen evolution. Journal of the American Chemical Society, 2015, 137(9): 3265–3270

    Article  Google Scholar 

  52. Maeda K, Domen K. New non-oxide photocatalysts designed for overall water splitting under visible light. Journal of Physical Chemistry C, 2007, 111(22): 7851–7861

    Article  Google Scholar 

  53. Kosco J, Sachs M, Godin R, et al. The effect of residual palladium catalyst contamination on the photocatalytic hydrogen evolution activity of conjugated polymers. Advanced Energy Materials, 2018, 8(34): 1802181

    Article  Google Scholar 

  54. Yanagida S, Kabumoto A, Mizumoto K, et al. Poly(p-phenylene)-catalysed photoreduction of water to hydrogen. Journal of the Chemical Society, Chemical Communications, 1985, (8): 474–475

  55. Schwab M G, Hamburger M, Feng X, et al. Photocatalytic hydrogen evolution through fully conjugated poly(azomethine) networks. Chemical Communications, 2010, 46(47): 8932–8934

    Article  Google Scholar 

  56. Shibata T, Kabumoto A, Shiragami T, et al. Novel visible-light-driven photocatalyst. Poly(p-phenylene)-catalyzed photoreductions of water, carbonyl compounds, and olefins. Journal of Physical Chemistry, 1990, 94(5): 2068–2076

    Google Scholar 

  57. Zhang Z, Long J, Yang L, et al. Organic semiconductor for artificial photosynthesis: water splitting into hydrogen by a bioinspired C3N3S3 polymer under visible light irradiation. Chemical Science (Cambridge), 2011, 2(9): 1826–1830

    Article  Google Scholar 

  58. Yamamoto T, Yoneda Y, Maruyama T. Ruthenium and nickel complexes of a π-conjugated electrically conducting polymer chelate ligand, poly(2,2′-bipyridine-5,5′-diyl), and their chemical and catalytic reactivity. Journal of the Chemical Society, Chemical Communications, 1992, 0(22): 1652–1654

    Article  Google Scholar 

  59. Maruyama T, Yamamoto T. Effective photocatalytic system based on chelating π-conjugated poly(2,2′-bipyridine-5,5′-diyl) and platinum for photoevolution of H2 from aqueous media and spectroscopic analysis of the catalyst. Journal of Physical Chemistry B, 1997, 101(19): 3806–3810

    Article  Google Scholar 

  60. Kailasam K, Schmidt J, Bildirir H, et al. Room temperature synthesis of heptazine-based microporous polymer networks as photocatalysts for hydrogen evolution. Macromolecular Rapid Communications, 2013, 34(12): 1008–1013

    Article  Google Scholar 

  61. Kailasam K, Mesch M B, Möhlmann L, et al. Donor-acceptor-type heptazine-based polymer networks for photocatalytic hydrogen evolution. Energy Technology (Weinheim), 2016, 4(6): 744–750

    Article  Google Scholar 

  62. Li R, Byun J, Huang W, et al. Poly(benzothiadiazoles) and their derivatives as heterogeneous photocatalysts forvisible-light-driven chemical transformations. ACS Catalysis, 2018, 8(6): 4735–4750

    Article  Google Scholar 

  63. Stegbauer L, Schwinghammer K, Lotsch B V. A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chemical Science (Cambridge), 2014, 5(7): 2789–2793

    Article  Google Scholar 

  64. Mukherjee G, Thote J, Aiyappa H B, et al. A porous porphyrin organic polymer (PPOP) for visible light triggered hydrogen production. Chemical Communications, 2017, 53(32): 4461–4464

    Article  Google Scholar 

  65. Huang X, Wu Z, Zheng H, et al. A sustainable method toward melamine-based conjugated polymer semiconductors for efficient photocatalytic hydrogen production under visible light. Green Chemistry, 2018, 20(3): 664–670

    Article  Google Scholar 

  66. Banerjee T, Haase F, Savasci G, et al. Single-site photocatalytic H2 evolution from covalent organic frameworks with molecular cobaloxime Co-catalysts. Journal of the American Chemical Society, 2017, 139(45): 16228–16234

    Article  Google Scholar 

  67. Wang K, Yang L M, Wang X, et al. Covalent triazine frameworks via a low-temperature polycondensation approach. Angewandte Chemie International Edition, 2017, 56(45): 14149–14153

    Article  Google Scholar 

  68. Banerjee T, Gottschling K, Savasci G, et al. H2 evolution with covalent organic framework photocatalysts. ACS Energy Letters, 2018, 3(2): 400–409

    Article  Google Scholar 

  69. Kosco J, McCulloch I. Residual Pd enables photocatalytic H2 evolution from conjugated polymers. ACS Energy Letters, 2018, 3(11): 2846–2850

    Article  Google Scholar 

  70. Zhao P, Wang L, Wu Y, et al. Hyperbranched conjugated polymer dots: the enhanced photocatalytic activity for visible light-driven hydrogen production. Macromolecules, 2019, 52(11): 4376–4384

    Article  Google Scholar 

  71. Weber J, Thomas A. Toward stable interfaces in conjugated polymers: Microporous poly(p-phenylene) and poly(phenyle-neethynylene) based on a spirobifluorene building block. Journal of the American Chemical Society, 2008, 130(20): 6334–6335

    Article  Google Scholar 

  72. Sprick R S, Bonillo B, Clowes R, et al. Visible-light-driven hydrogen evolution using planarized conjugated polymer photo-catalysts. Angewandte Chemie International Edition, 2016, 55(5): 1792–1796

    Article  Google Scholar 

  73. Schwarze M, Stellmach D, Schröder M, et al. Quantification of photocatalytic hydrogen evolution. Physical Chemistry Chemical Physics, 2013, 15(10): 3466–3472

    Article  Google Scholar 

  74. Sprick R S, Aitchison C M, Berardo E, et al. Maximising the hydrogen evolution activity in organic photocatalysts by co-polymerisation. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2018, 6(25): 11994–12003

    Article  Google Scholar 

  75. Sprick R S, Wilbraham L, Bai Y, et al. Nitrogen containing linear poly(phenylene) derivatives for photo-catalytic hydrogen evolution from water. Chemistry of Materials, 2018, 30(16): 5733–5742

    Article  Google Scholar 

  76. Ting L Y, Jayakumar J, Chang C L, et al. Effect of controlling the number of fused rings on polymer photocatalysts for visible-light-driven hydrogen evolution. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2019, 7(40): 22924–22929

    Article  Google Scholar 

  77. Miao J, Li H, Wang T, et al. Donor-acceptor type conjugated copolymers based on alternating BNBP and oligothiophene units: from electron acceptor to electron donor and from amorphous to semicrystalline. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2020, 8(40): 20998–21006

    Article  Google Scholar 

  78. Vogel A, Forster M, Wilbraham L, et al. Photocatalytically active ladder polymers. Faraday Discussions, 2019, 215(0): 84–97

    Article  Google Scholar 

  79. Chen X, Li R, Liu Z, et al. Small photoblinking semiconductor polymer dots for fluorescence nanoscopy. Advanced Materials, 2017, 29(5): 1604850

    Article  Google Scholar 

  80. Moffitt M, Khougaz K, Eisenberg A. Micellization of ionic block copolymers. Accounts of Chemical Research, 1996, 29(2): 95–102

    Article  Google Scholar 

  81. Ye F, Wu C, Jin Y, et al. Ratiometric temperature sensing with semiconducting polymer dots. Journal of the American Chemical Society, 2011, 133(21): 8146–8149

    Article  Google Scholar 

  82. Chan Y H, Wu C, Ye F, et al. Development of ultrabright semiconducting polymer dots for ratiometric pH sensing. Analytical Chemistry, 2011, 83(4): 1448–1455

    Article  Google Scholar 

  83. Jiang Y, McNeill J. Light-harvesting and amplified energy transfer in conjugated polymer nanoparticles. Chemical Reviews, 2017, 117(2): 838–859

    Article  Google Scholar 

  84. Pu K, Shuhendler A J, Jokerst J V, et al. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nature Nanotechnology, 2014, 9(3): 233–239

    Article  Google Scholar 

  85. Wu C, Schneider T, Zeigler M, et al. Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting. Journal of the American Chemical Society, 2010, 132(43): 15410–15417

    Article  Google Scholar 

  86. Huang Y C, Chen C P, Wu P J, et al. Coumarin dye-embedded semiconducting polymer dots for ratiometric sensing of fluoride ions in aqueous solution and bio-imaging in cells. Journal of Materials Chemistry B, Materials for Biology and Medicine, 2014, 2(37): 6188–6191

    Article  Google Scholar 

  87. Guo L, Ge J, Wang P. Polymer dots as effective phototheranostic agents. Photochemistry and Photobiology, 2018, 94(5): 916–934

    Article  Google Scholar 

  88. Hassan A M, Wu X, Jarrett J W, et al. Polymer dots enable deep in vivo multiphoton fluorescence imaging of microvasculature. Biomedical Optics Express, 2019, 10(2): 584–599

    Article  Google Scholar 

  89. Jayakumar J, Chou H-H. Recent advances in visible-light-driven hydrogen evolution from water using polymer photocatalysts. ChemCatChem, 2020, 12(3): 689–704

    Article  Google Scholar 

  90. Dai C, Liu B. Conjugated polymers for visible-light-driven photocatalysis. Energy & Environmental Science, 2020, 13(1): 24–52

    Article  MathSciNet  Google Scholar 

  91. Tseng P J, Chang C L, Chan Y H, et al. Design and synthesis of cycloplatinated polymer dots as photocatalysts for visible-light-driven hydrogen evolution. ACS Catalysis, 2018, 8(9): 7766–7772

    Article  Google Scholar 

  92. Wang L, Fernández-Terán R, Zhang L, et al. Organic polymer dots as photocatalysts for visible light-driven hydrogen generation. Angewandte Chemie International Edition, 2016, 55(40): 12306–12310

    Article  Google Scholar 

  93. Pati P B, Damas G, Tian L, et al. An experimental and theoretical study of an efficient polymer nano-photocatalyst for hydrogen evolution. Energy & Environmental Science, 2017, 10(6): 1372–1376

    Article  Google Scholar 

  94. Kaeffer N, Morozan A, Artero V. Oxygen tolerance of a molecular engineered cathode for hydrogen evolution based on a cobalt diimine-dioxime catalyst. Journal of Physical Chemistry B, 2015, 119(43): 13707–13713

    Article  Google Scholar 

  95. Liu A, Tai C W, Holá K, et al. Hollow polymer dots: nature-mimicking architecture for efficient photocatalytic hydrogen evolution reaction. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2019, 7(9): 4797–4803

    Article  Google Scholar 

  96. Zhang J, Chen X, Takanabe K, et al. Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angewandte Chemie International Edition, 2010, 49(2): 441–444

    Article  Google Scholar 

  97. Chang C L, Lin W C, Jia C Y, et al. Low-toxic cycloplatinated polymer dots with rational design of acceptor co-monomers for enhanced photocatalytic efficiency and stability. Applied Catalysis B: Environmental, 2020, 268: 118436

    Article  Google Scholar 

  98. Hu Z, Wang Z, Zhang X, et al. Conjugated polymers with oligoethylene glycol side chains for improved photocatalytic hydrogen evolution. iScience, 2019, 13: 33–42

    Article  Google Scholar 

  99. Rafiq M, Chen Z, Tang H, et al. Water-alcohol-soluble hyperbranched polyelectrolytes and their application in polymer solar cells and photocatalysis. ACS Applied Polymer Materials, 2020, 2(1): 12–18

    Article  Google Scholar 

  100. Hu Z, Zhang X, Yin Q, et al. Highly efficient photocatalytic hydrogen evolution from water-soluble conjugated polyelectrolytes. Nano Energy, 2019, 60: 775–783

    Article  Google Scholar 

  101. Zhou W, Jia T, Shi H, et al. Conjugated polymer dots/graphitic carbon nitride nanosheet heterojunctions for metal-free hydrogen evolution photocatalysis. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2019, 7(1): 303–311

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by ACS Petroleum Research Fund (PRF # 59716-DNI10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathur, S., Rogers, B. & Wei, W. Organic conjugated polymers and polymer dots as photocatalysts for hydrogen production. Front. Energy 15, 667–677 (2021). https://doi.org/10.1007/s11708-021-0767-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-021-0767-7

Keywords

Navigation