Skip to main content
Log in

Micro-sized hydrothermal carbon supporting metal oxide nanoparticles as efficient catalyst for mono-dehydration of sugar alcohol

  • Research Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

Most known catalytic dehydration of sugar alcohols such as D-sorbitol and D-mannitol can only produce di-dehydrated forms as major product, but mono-dehydrated products are also useful chemicals. Moreover, both di- and mono-dehydration demand a high temperature (150°C or higher), which deserves further attentions. To improve the mono-dehydration efficiency, a series of metal-containing hydrothermal carbonaceous materials (HTC) are prepared as catalyst in this work. Characterization reveals that the composition of preparative solution has a key influence on the morphology of HTC. In transformation of D-sorbitol, all HTC catalysts show low conversions in water regardless of temperature, but much better outputs are obtained in ethanol, especially at a higher temperature. When D-mannitol is selected as substrate, moderate to high conversions are obtained in both water and ethanol. On the other hand, high mono-dehydration selectivity is obtained for both sugar alcohols by using all catalysts. The origin of mono-dehydration selectivity and role of carbon component in catalysis are discussed in association with calculations. This study provides an efficient, mild, eco-friendly, and cost-effective system for mono-dehydration of sugar alcohols, which means a lot to development in new detergents or other fine chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shen Y. Carbon dioxide bio-fixation and wastewater treatment via algae photochemical synthesis for biofuels production. RSC Advances, 2014, 91: 49672–49722

    Article  Google Scholar 

  2. Alonso D M, Bond J Q, Dumesic J A. Catalytic conversion of biomass to biofuels. Green Chemistry, 2010, (9): 1493–1513

    Google Scholar 

  3. Zhang J, Li J, Wu S B, Liu Y. Advances in the catalytic production and utilization of sorbitol. Industrial & Engineering Chemistry Research, 2013, 2(34): 11799–11815

    Article  Google Scholar 

  4. Zhang H, Rindt C C M, Smeulders D M J, Nedea S V. Nanoscale heat transfer in carbon nanotubes–sugar alcohol composite as heat storage materials. The Journal of Physical Chemistry C, 2016, 0(38): 21915–21924

    Article  Google Scholar 

  5. Zhang M, Lai W, Su L, Wu G. Effect of catalyst on the molecular structure and thermal properties of isosorbide polycarbonates. Industrial & Engineering Chemistry Research, 2018, 7(14): 4824–4831

    Article  Google Scholar 

  6. Ćirin D M, Poša M M, Krstonošić V S. Interactions between sodium cholate or sodium deoxycholate and nonionic surfactant (Tween 20 or Tween 60) in aqueous solution. Industrial & Engineering Chemistry Research, 2012, 1(9): 3670–3676

    Article  Google Scholar 

  7. Baggett N, Mosihuzzaman M, Webber J M. Synthesis of some monoacetals of 1,4-anhydro-D-mannitol. Carbohydrate Research, 1983, 116(1): 49–60

    Article  Google Scholar 

  8. Flèche G, Huchette M. Isosorbide. Preparation, properties and chemistry. Starch, 1986, 38(1): 26–30

    Article  Google Scholar 

  9. Rusu O A, Hoelderich W F, Wyart H, Ibert M. Metal phosphate catalyzed dehydration of sorbitol under hydrothermal conditions. Applied Catalysis B: Environmental, 2015, 176–177: 139–149

    Article  Google Scholar 

  10. Tang Z C, Yu D H, Sun P, Li H, Huang H. Phosphoric acid modified Nb2O5: a selective and reusable catalyst for dehydration of sorbitol to isosorbide. Bulletin of the Korean Chemical Society, 2010, 31 (12): 3679–3683

    Article  Google Scholar 

  11. Kobayashi H, Yokoyama H, Feng B, Fukuoka A. Dehydration of sorbitol to isosorbide over H-beta zeolites with high Si/Al ratios. Green Chemistry, 2015, 17(5): 2732–2735

    Article  Google Scholar 

  12. Cubo A, Iglesias J, Morales G, Melero J A, Moreno J, Sánchez-Vázquez R. Dehydration of sorbitol to isosorbide in melted phase with propyl-sulfonic functionalized SBA-15: influence of catalyst hydrophobization. Applied Catalysis A: General, 2017, 531: 151–160

    Article  Google Scholar 

  13. Zhang J, Wang L, Liu F, Meng X, Mao J, Xiao F S. Enhanced catalytic performance in dehydration of sorbitol to isosorbide over a superhydrophobic mesoporous acid catalyst. Catalysis Today, 2015, 242: 249–254

    Article  Google Scholar 

  14. Robinson J M, Wadle A M, Reno M D, Kidd R, Barrett Hinsz S R, Urquieta J. Solvent- and microwave-assisted dehydrations of polyols to anhydro and dianhydro polyols. Energy & Fuels, 2015, 29(10): 6529–6535

    Google Scholar 

  15. Yamaguchi A, Hiyoshi N, Sato O, Shirai M. Sorbitol dehydration in high temperature liquid water. Green Chemistry, 2011, 13(4): 873–881

    Article  Google Scholar 

  16. Yokoyama H, Kobayashi H, Hasegawa J, Fukuoka A. Selective dehydration of mannitol to isomannide over Hβ zeolite. ACS Catalysis, 2017, 7(7): 4828–4834

    Article  Google Scholar 

  17. Okuhara T. Water-tolerant solid acid catalysts. Chemical Reviews, 2002, 102(10): 3641–3666

    Article  Google Scholar 

  18. Dabbawala A A, Mishra D K, Huber G W, Hwang J S. Role of acid sites and selectivity correlation in solvent free liquid phase dehydration of sorbitol to isosorbide. Applied Catalysis A: General, 2015, 492: 252–261

    Article  Google Scholar 

  19. Polaert I, FelixMC, Fornasero M, Marcotte S, Buvat J C, Estel L. A greener process for isosorbide production: kinetic study of the catalytic dehydration of pure sorbitol under microwave. Chemical Engineering Journal, 2013, 222: 228–239

    Article  Google Scholar 

  20. Clancy A J, Bayazit M K, Hodge S A, Skipper N T, Howard C A, Shaffer M S P. Charged carbon nanomaterials: redox chemistries of fullerenes, carbon nanotubes, and graphenes. Chemical Reviews, 2018, 118(16): 7363–7408

    Article  Google Scholar 

  21. Lee J S, Kim S I, Yoon J C, Jang J H. Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor. ACS Nano, 2013, 7(7): 6047–6055

    Article  Google Scholar 

  22. Moothi K, Simate G S, Falcon R, Iyuke S E, Meyyappan M. Carbon nanotube synthesis using coal pyrolysis. Langmuir, 2015, 31(34): 9464–9472

    Article  Google Scholar 

  23. Zhu L, Zhao X, Li Y, Yu X, Li C, Zhang Q. High-quality production of graphene by liquid-phase exfoliation of expanded graphite. Materials Chemistry and Physics, 2013, 137(3): 984–990

    Article  Google Scholar 

  24. Ulstrup S, Lacovig P, Orlando F, Lizzit D, Bignardi L, Dalmiglio M, Bianchi M, Mazzola F, Baraldi A, Larciprete R, Hofmann P, Lizzit S. Photoemission investigation of oxygen intercalated epitaxial graphene on Ru(0001). Surface Science, 2018, 678: 57–64

    Article  Google Scholar 

  25. Li S, Jia Z, Li Z, Li Y, Zhu R. Synthesis and characterization of mesoporous carbon nanofibers and its adsorption for dye in wastewater. Advanced Powder Technology, 2016, 27(2): 591–598

    Article  Google Scholar 

  26. Salimi M, Balou S, Kohansal K, Babaei K, Tavasoli A, Andache M. Optimizing the preparation of meso- and microporous canola stalkderived hydrothermal carbon via response surface methodology for methylene blue removal. Energy & Fuels, 2017, 31(11): 12327–12338

    Google Scholar 

  27. Zhao R, Wang Y, Li X, Sun B, Li Y, Ji H, Qiu J, Wang C. Surface activated hydrothermal carbon-coated electrospun PAN fiber membrane with enhanced adsorption properties for herbicide. ACS Sustainable Chemistry & Engineering, 2016, 4(5): 2584–2592

    Article  Google Scholar 

  28. Qin Y, Zhang L, An T. Hydrothermal carbon-mediated Fenton-like reaction mechanism in the degradation of alachlor: direct electron transfer from hydrothermal carbon to Fe(III). ACS Applied Materials & Interfaces, 2017, 9(20): 17115–17124

    Article  Google Scholar 

  29. Zhang P, Song X, Yu C, Gui J, Qiu J. Biomass-derived carbon nanospheres with turbostratic structure as metal-free catalysts for selective hydrogenation of o-chloronitrobenzene. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 7481–7485

    Article  Google Scholar 

  30. Bhattacharjee R, Datta A. Role of carbon support for subnanometer gold-cluster-catalyzed disiloxane synthesis from hydrosilane and water. The Journal of Physical Chemistry C, 2017, 121(37): 20101–20112

    Google Scholar 

  31. Johari P, Shenoy V B. Modulating optical properties of graphene oxide: role of prominent functional group. ACS Nano, 2011, 5(9): 7640–7647

    Article  Google Scholar 

  32. Ahmadi M, Mistry H, Roldan Cuenya B. Tailoring the catalytic properties of metal nanoparticles via support interactions. The Journal of Physical Chemistry Letters, 2016, 7(17): 3519–3533

    Article  Google Scholar 

  33. Luo Z, Lu Y, Somers L A, Johnson A T C. High yield preparation of macroscopic graphene oxide membranes. Journal of the American Chemical Society, 2009, 131(3): 898–899

    Article  Google Scholar 

  34. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A Jr, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachary K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam N J, Klene M, Knox J E, Cross J B, Bakken V, Amado C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J, Fox D J. Gaussian 09W Revision D.01. Wallingford, CT: Gaussian, Inc., 2013

    Google Scholar 

  35. van Alem K, Sudhölter E J R, Zuilhof H. Quantum chemical calculations on α-substituted ethyl cations: a comparison between B3LYP and Post-HT method. The Journal of Physical Chemistry A, 1998, 102(52): 10860–10868

    Article  Google Scholar 

  36. Zhao Z P, Li MS, Zhang J Y, Li H N, Zhu P P, LiuWF. New chiral catalytic membranes created by coupling UV-photografting with covalent immobilization of salen-Co(III) for hydrolytic kinetic resolution of racemic epichlorohydrin. Industrial & Engineering Chemistry Research, 2012, 51(28): 9531–9539

    Article  Google Scholar 

  37. Chen H R, Shi J L, Zhang W H, Ruan M L, Yan D S. Incorporation of titanium into the inorganic wall of ordered porous zirconium oxide via direct synthesis. Chemistry of Materials, 2001, 13(3): 1035–1040

    Article  Google Scholar 

  38. Ebina T, Iwasaki T, Chatterjee A, Katagiri M, Stucky G D. Comparative study of XPS and DFT with reference to the distributions of Al in tetrahedral octahedral sheets of phyllosilicates. The Journal of Physical Chemistry B, 1997, 101(7): 1125–1129

    Article  Google Scholar 

  39. Jirka I. Initial and final state effects in the photoelectron and auger spectra of Si and Al bonded in zeolites. The Journal of Physical Chemistry B, 1997, 101(41): 8133–8140

    Article  Google Scholar 

  40. Galindo I R, Viveros T, Chadwick D. Synthesis and characterization of titania-based ternary and binary mixed oxides prepared by the solgel method and their activity in 2-propanol dehydration. Industrial & Engineering Chemistry Research, 2007, 46(4): 1138–1147

    Article  Google Scholar 

  41. Hiyoshi N. Nanocrystalline sodalite: preparation and application to epoxidation of 2-cyclohexen-1-one with hydrogen peroxide. Applied Catalysis A: General, 2012, 419–420: 164–169

    Article  Google Scholar 

  42. Zhan H, Yang X, Wang C, Chen J, Wen Y, Liang C, Greer H F, Wu M, Zhou W. Multiple nucleation and crystal growth of barium titanate. Crystal Growth & Design, 2012, 12(3): 1247–1253

    Article  Google Scholar 

  43. Sing K S W, Everett D H, Haul R A W, Moscou L, Pierotti R A, Rouquérol J, Siemieniewska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 1985, 57(4): 603–619

    Article  Google Scholar 

  44. Zhang H, Wang Y M, Zhang L, Gerritsen G, Abbenhuis H C L, van Santen R A, Li C. Enantioselective epoxidation of β-methylstyrene catalyzed by immobilized Mn(salen) catalysts in different mesoporous silica supports. Journal of Catalysis, 2008, 256(2): 226–236

    Article  Google Scholar 

  45. Lee K H, Kim K W, Pesapane A, Kim H Y, Rabolt J F. Polarized FT-IR study of macroscopically oriented electrospun Nylon-6 nanofibers. Macromolecules, 2008, 41(4): 1494–1498

    Article  Google Scholar 

  46. Pan C, Huang B, Li X, Zhu H, Zhang D, Zheng A, Li Y, Sun Y. Synthesis and catalytic property of fibrous titanium-containing graphite oxide. Catalysis Surveys from Asia, 2017, 21(4): 160–174

    Article  Google Scholar 

  47. Barroso-Bogeat A, Alexandre-Franco M, Fernández-González C, Macías-García A, Gómez-Serrano V. Preparation of activated carbon-SnO2, TiO2, and WO3 catalysts. Study by FT-IR spectroscopy. Industrial & Engineering Chemistry Research, 2016, 55(18): 5200–5206

    Article  Google Scholar 

  48. Eryürek M, Haman Bayarı S, Yüksel D, Hanhan M E. Density functional investigation of the molecular structures, vibrational spectra and molecular properties of sulfonated pyridyl imine ligands and their palladium complexes. Computational and Theoretical Chemistry, 2013, 1013: 109–115

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by the Fundamental Research Funds for the Central Universities (No. xjj2014005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Donghua Zhang or Yang Sun.

Electronic Supplementary Material

11708_2020_677_MOESM1_ESM.pdf

The micro-sized hydrothermal carbon supporting metal oxide nanoparticles as efficient catalyst for mono-dehydration of sugar alcohol

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, C., Fan, C., Wang, W. et al. Micro-sized hydrothermal carbon supporting metal oxide nanoparticles as efficient catalyst for mono-dehydration of sugar alcohol. Front. Energy 16, 822–839 (2022). https://doi.org/10.1007/s11708-020-0677-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-020-0677-0

Keywords

Navigation