Skip to main content

Advertisement

Log in

Effect of 2,5-dimethylfuran addition on ignition delay times of n-heptane at high temperatures

  • Research Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

The shock tube autoignition of 2,5-dimethylfuran (DMF)/n-heptane blends (DMF0-100%, by mole fraction) with equivalence ratios of 0.5, 1.0, and 2.0 over the temperature range of 1200–1800 K and pressures of 2.0 atm and 10.0 atm were investigated. A detailed blend chemical kinetic model resulting from the merging of validated kinetic models for the components of the fuel blends was developed. The experimental observations indicate that the ignition delay times nonlinearly increase with an increase in the DMF addition level. Chemical kinetic analysis including radical pool analysis and flux analysis were conducted to explain the DMF addition effects. The kinetic analysis shows that at lower DMF blending levels, the two fuels have negligible impacts on the consumption pathways of each other. As the DMF addition increases to relatively higher levels, the consumption path of n-heptane is significantly changed due to the competition of small radicals, which primarily leads to the nonlinear increase in the ignition delay times of DMF/nheptane blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhong S, Daniel R, Xu H, Zhang J, Turner D, Wyszynski M L, Richards P. Combustion and emissions of 2,5-dimethylfuran in a direct-injection spark-ignition engine. Energy & Fuels, 2010, 24(5): 2891–2899

    Article  Google Scholar 

  2. Somers K P, Simmie J M, Gillespie F, Conroy C, Black G, Metcalfe W K, Battin-Leclerc F, Dirrenberger P, Herbinet O, Glaude P A, Dagaut P, Togbé C, Yasunaga K, Fernandes R X, Lee C, Tripathi R, Curran H J. A comprehensive experimental and detailed chemical kinetic modelling study of 2,5-dimethylfuran pyrolysis and oxidation. Combustion and Flame, 2013, 160(11): 2291–2318

    Article  Google Scholar 

  3. Sirjean B, Fournet R, Glaude P A, Battin-Leclerc F, Wang W, Oehlschlaeger M A. Shock tube and chemical kinetic modeling study of the oxidation of 2,5-dimethylfuran. Journal of Physical Chemistry A, 2013, 117(7): 1371–1392

    Article  Google Scholar 

  4. Román-Leshkov Y, Barrett C J, Liu Z Y, Dumesic J A. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature, 2007, 447(7147): 982–985

    Article  Google Scholar 

  5. Zhao H, Holladay J E, Brown H, Zhang Z C. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science, 2007, 316(5831): 1597–1600

    Article  Google Scholar 

  6. Daniel R, Tian G, Xu H, Wyszynski M L, Wu X, Huang Z. Effect of spark timing and load on a DISI engine fuelled with 2,5-dimethylfuran. Fuel, 2011, 90(2): 449–458

    Article  Google Scholar 

  7. Daniel R, Wei L, Xu H, Wang C, Wyszynski M L, Shuai S. Speciation of hydrocarbon and carbonyl emissions of 2,5-dimethylfuran combustion in a DISI engine. Energy & Fuels, 2012, 26(11): 6661–6668

    Article  Google Scholar 

  8. Rothamer D A, Jennings J H. Study of the knocking propensity of 2,5-dimethylfuran-gasoline and ethanol-gasoline blends. Fuel, 2012, 98: 203–212

    Article  Google Scholar 

  9. Gouli S, Lois E, Stournas S. Effects of some oxygenated substitutes on gasoline properties, spark ignition engine performance, and emissions. Energy & Fuels, 1998, 12(5): 918–924

    Article  Google Scholar 

  10. Zhang Q, Chen G, Zheng Z, Liu H, Xu J, Yao M. Combustion and emissions of 2,5-dimethylfuran addition on a diesel engine with low temperature combustion. Fuel, 2013, 103: 730–735

    Article  Google Scholar 

  11. Li J, Yang W M, An H, Zhou D Z, Yu W B, Wang J X, Li L. Numerical investigation on the effect of reactivity gradient in an RCCI engine fueled with gasoline and diesel. Energy Conversion and Management, 2015, 92: 342–352

    Article  Google Scholar 

  12. Benajes J, Molina S, García A, Monsalve-Serrano J. Effects of low reactivity fuel characteristics and blending ratio on low load RCCI (reactivity controlled compression ignition) performance and emissions in a heavy-duty diesel engine. Energy, 2015, 90: 1261–1271

    Article  Google Scholar 

  13. Li J, Yang W, Zhou D. Review on the management of RCCI engines. Renewable & Sustainable Energy Reviews, 2017, 69: 65–79

    Article  Google Scholar 

  14. Ma S, Zheng Z, Liu H, Zhang Q, Yao M. Experimental investigation of the effects of diesel injection strategy on gasoline/diesel dual-fuel combustion. Applied Energy, 2013, 109: 202–212

    Article  Google Scholar 

  15. Walker N R, Dempsey A B, Andrie M J, Reitz R D. Experimental study of low-pressure fueling under RCCI engine operation. In: Paper ILASS2012–80, ILASS-Americas 24th Annual Conference on Liquid Atomization and Spray Systems, 2012

    Google Scholar 

  16. Hanson R, Reitz R D. Transient RCCI operation in a light-duty multi-cylinder engine. SAE International Journal of Engines, 2013, 6(3): 1694–1705

    Article  Google Scholar 

  17. Curran S, Prikhodko V, Cho K, Sluder C S, Parks J, Wagner R, Kokjohn S, Reitz R D. In-cylinder fuel blending of gasoline/diesel for improved efficiency and lowest possible emissions on a multicylinder light-duty diesel engine. SAE Technical Paper, 2010

    Google Scholar 

  18. Wu X, Huang Z, Jin C, Wang X, Zheng B, Zhang Y, Wei L. Measurements of laminar burning velocities and markstein lengths of 2,5-dimethylfuran-air-diluent premixed flames. Energy & Fuels, 2009, 23(9): 4355–4362

    Article  Google Scholar 

  19. Wu X, Huang Z, Jin C, Wang X, Wei L. Laminar burning velocities and markstein lengths of 2,5-dimethylfuran-air premixed flames at elevated temperatures. Combustion Science and Technology, 2010, 183(3): 220–237

    Article  Google Scholar 

  20. Wu X, Huang Z, Wang X, Jin C, Tang C, Wei L, Law C K. Laminar burning velocities and flame instabilities of 2,5-dimethylfuran–air mixtures at elevated pressures. Combustion and Flame, 2011, 158 (3): 539–546

    Article  Google Scholar 

  21. Simmie J M, MetcalfeWK. Ab initio study of the decomposition of 2,5-dimethylfuran. Journal of Physical Chemistry A, 2011, 115(32): 8877–8888

    Article  Google Scholar 

  22. Sirjean B, Fournet R. Unimolecular decomposition of 2,5-dimethylfuran: a theoretical chemical kinetic study. Physical Chemistry Chemical Physics, 2013, 15(2): 596–611

    Article  Google Scholar 

  23. Simmie J M, Curran H J. Formation enthalpies and bond dissociation energies of Alkylfurans. The strongest CsX bonds known? Journal of Physical Chemistry, 2009, 113(17): 5128–5137

    Google Scholar 

  24. Qian Y, Zhu L, Wang Y, Lu X. Recent progress in the development of biofuel 2,5-dimethylfuran. Renewable & Sustainable Energy Reviews, 2015, 41: 633–646

    Article  Google Scholar 

  25. Vermeer D J, Meyer J W, Oppenheim A K. Auto-ignition of hydrocarbons behind reflected shock waves. Combustion and Flame, 1972, 18(3): 327–336

    Article  Google Scholar 

  26. Coats C M, Williams A. Investigation of the ignition and bomcustion of n-heptane-oxygen mixtures. Proceedings of the Combustion Institute, 1979, 17(1): 611–621

    Article  Google Scholar 

  27. Ciezki H K, Adomeit G. Shock-tube investigation of self-ignition of n-heptane-air mixtures under engine relevant conditions. Combustion and Flame, 1993, 93(4): 421–433

    Article  Google Scholar 

  28. Herzler J, Jerig L, Roth P. Shock tube study of the ignition of lean nheptane/ air mixtures at intermediate temperatures and high pressures. Proceedings of the Combustion Institute, 2005, 30(1): 1147–1153

    Article  Google Scholar 

  29. Davidson D F, Hong Z, Pilla G L, Farooq A, Cook R D, Hanson R K. Multi-species time-history measurements during n-dodecane oxidation behind reflected shock waves. Proceedings of the Combustion Institute, 2011, 33(1): 151–157

    Article  Google Scholar 

  30. Zhang J, Niu S, Zhang Y, Tang C, Jiang X, Hu E, Huang Z. Experimental and modeling study of the auto-ignition of n-heptane/ n-butanol mixtures. Combustion and Flame, 2013, 160(1): 31–39

    Article  Google Scholar 

  31. Westbrook C K, Warnatz J, Pitz W J. A detailed chemical kinetic reaction mechanism for the oxidation of iso-octane and n-heptane over an extended temperature range and its application to analysis of engine knock. Proceedings of the Combustion Institute, 1989, 22(1): 893–901

    Article  Google Scholar 

  32. Curran H J, Gaffuri P, Pitz W J, Westbrook C K. A Comprehensive modeling study of n-heptane oxidation. Combustion and Flame, 1998, 114(1–2): 149–177

    Article  Google Scholar 

  33. Mehl M, PitzW J, Westbrook C K, Curran H J. Kinetic modeling of gasoline surrogate components and mixtures under engine conditions. Proceedings of the Combustion Institute, 2011, 33(1): 193–200

    Article  Google Scholar 

  34. Herbinet O, Husson B, Serinyel Z, Cord M, Warth V, Fournet R, Glaude P A, Sirjean B, Battin-Leclerc F, Wang Z, Xie M, Cheng Z, Qi F. Experimental and modeling investigation of the lowtemperature oxidation of n-heptane. Combustion and Flame, 2012, 159(12): 3455–3471

    Article  Google Scholar 

  35. Pelucchi M, Bissoli M, Cavallotti C, Cuoci A, Faravelli T, Frassoldati A, Ranzi E, Stagni A. Improved Kinetic model of the low-temperature oxidation of n-heptane. Energy & Fuels, 2014, 28 (11): 7178–7193

    Article  Google Scholar 

  36. Zhang K, Banyon C, Bugler J, Curran H J, Rodriguez A, Herbinet O, Battin-Leclerc F, B’Chir C, Heufer K A. An updated experimental and kinetic modeling study of n-heptane oxidation. Combustion and Flame, 2016, 172: 116–135

    Article  Google Scholar 

  37. Horning D C, Davidson D F, Hanson R K. Study of the hightemperature autoignition of n-alkane/O/Ar mixtures. Journal of Propulsion and Power, 2002, 18(2): 363–371

    Article  Google Scholar 

  38. Herzler J, Naumann C. Shock-tube study of the ignition of methane/ ethane/hydrogen mixtures with hydrogen contents from 0%to 100% at different pressures. Proceedings of the Combustion Institute, 2009, 32(1): 213–220

    Article  Google Scholar 

  39. Lutz A E, Kee R J, Miller J A. SENKIN: a Fortran program for predicting homogeneous gas phase chemical Kinetics with sensitivity analysis.1988-02-01, https://www.osti.gov/biblio/5371815-senkin-fortran-program-predicting-homogeneous-gas-phase-chemical-kinetics-sensitivity-analysis

  40. Kee R J, Rupley F M, Miller J A. CHEMKIN-II: a Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. 1989-09-01, https://www.osti.gov/biblio/5681118-chemkin-ii-fortran-chemical-kinetics-package-analysis-gas-phase-chemicalkinetics

  41. Xu N, Tang C, Meng X, Fan X, Tian Z, Huang Z. Experimental and kinetic study on the ignition delay times of 2,5-dimethylfuran and the comparison to 2-methylfuran and furan. Energy & Fuels, 2015, 29(8): 5372–5381

    Article  Google Scholar 

  42. Hu E, Chen Y, Zhang Z, Pan L, Li Q, Cheng Y, Huang Z. Experimental and kinetic study on ignition delay times of dimethyl carbonate at high temperature. Fuel, 2015, 140: 626–632

    Article  Google Scholar 

  43. Chen Z, Qin X, Ju Y, Zhao Z, Chaos M, Dryer F L. High temperature ignition and combustion enhancement by dimethyl ether addition to methane–air mixtures. Proceedings of the Combustion Institute, 2007, 31(1): 1215–1222

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant Nos. 91641124, 51306144) and the Project of Youth Star in Science and Technology of Shaanxi Province (2018KJXX-031). The supports from the Fundamental Research Funds for the Central Universities and the State Key Laboratory of Engines at Tianjin University (K2018-10) are also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erjiang Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Hu, E., Xu, Z. et al. Effect of 2,5-dimethylfuran addition on ignition delay times of n-heptane at high temperatures. Front. Energy 13, 464–473 (2019). https://doi.org/10.1007/s11708-019-0609-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-019-0609-z

Keywords

Navigation