Frontiers in Energy

, Volume 12, Issue 2, pp 249–258 | Cite as

Decoration of vertically aligned TiO2 nanotube arrays with WO3 particles for hydrogen fuel production

Research Article
  • 25 Downloads

Abstract

WO3 decorated photoelectrodes of titanium nanotube arrays (W-oxide TNTAs) were synthesized via a two-step process, namely, electrochemical oxidation of titanium foil and electrodeposition of W-oxide for various interval times of 1, 2, 3, 5, and 20 min to improve the photoelectrochemical performance and the amount of hydrogen generated. The synthesized photoelectrodes were characterized by various characterization techniques. The presence of tungsten in the modified TNTAs was confirmed using energy dispersive X-ray spectroscopy (EDX). Field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscope (HRTEM) proved the deposition of W-oxide as small particles staked up on the surface of the tubes at lower deposition time whereas longer times produced large and aggregate particles to mostly cover the surface of TiO2 nanotubes. Additionally, the incorporation of WO3 resulted in a shift of the absorption edge toward visible light as confirmed by UV-Vis diffuse reflectance spectroscopy and a decrease in the estimated band gap energy values hence, modified TNTAs facilitated a more efficient utilization of solar light for water splitting. From the photoelectrochemical measurement data, the optimal photoelectrode produced after 2 min of deposition time improved the photo conversion efficiency and the hydrogen generation by 30% compared to that of the pure TNTA.

Keywords

titanium dioxide nanotube arrays potentiostaticanodization electrodeposition method tungsten oxide photoelectrochemical water splitting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Science and Technology Development Fund (STDF) of Egypt (project number 3649).

References

  1. 1.
    Hunge Y M, Mahadik M A, Moholkar A V, Bhosale C H. Photoelectrocatalytic degradation of oxalic acid using WO3 and stratified WO3/TiO2 photocatalysts under sunlight illumination. Ultrasonics Sonochemistry, 2017, 35(Pt A): 233–242CrossRefGoogle Scholar
  2. 2.
    Van de Krol R, Grätzel M. Photoelectrochemical Hydrogen Production. New York: Springer, 2012CrossRefGoogle Scholar
  3. 3.
    Wydrzynski T J, Hillier W. Molecular Solar Fuels. Cambridge: Royal Society of Chemistry, 2012Google Scholar
  4. 4.
    Archer M D, Nozik A J. Nanostructured and Photoelectrochemical Systems for Solar Photon Conversion. London: Imperial College Press, 2008CrossRefGoogle Scholar
  5. 5.
    Grätzel M. Photoelectrochemical cells. Nature, 2001, 414(6861): 338–344CrossRefGoogle Scholar
  6. 6.
    Grimes C A, Varghese O K, Ranjan S. Light, Water, Hydrogen: The Solar Generation of Hydrogen by Water Photoelectrolysis. New York: Springer, 2008CrossRefGoogle Scholar
  7. 7.
    Bhattacharyya R, Misra A, Sandeep K C. Photovoltaic solar energy conversion for hydrogen production by alkaline water electrolysis: conceptual design and analysis. Energy Conversion and Management, 2017, 133: 1–13CrossRefGoogle Scholar
  8. 8.
    Viswanathan B, Subramanian V, Lee J S. Materials and Processes for Solar Fuel Production. New York: Springer, 2014CrossRefGoogle Scholar
  9. 9.
    Ge M, Cao C, Huang J, Li S, Chen Z, Zhang K Q, Al-Deyab S S, Lai Y. A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. Journal of Materials Chemistry. A, 2016, 4(18): 6772–6801CrossRefGoogle Scholar
  10. 10.
    Pagnout C, Jomini S, Dadhwal M, Caillet C, Thomas F, Bauda P. Role of electrostatic interactions in the toxicity of titanium dioxide nanoparticles toward Escherichia coli. Colloids and Surfaces. B, Biointerfaces, 2012, 92: 315–321CrossRefGoogle Scholar
  11. 11.
    Khataee A, Mansoori G A. Nanostructured Materials Titanium Dioxide Properties, Preparation and applications. Singapore: World Scientific, 2012Google Scholar
  12. 12.
    Anpo M, Kamat P V. Environmentally Benign Photocatalysts: Applications of Titanium Oxide-Based Materials. London: Springer, 2010CrossRefGoogle Scholar
  13. 13.
    Momeni M M, Ghayeb Y, Ghonchegi Z. Photocatalytic properties of Cr–TiO2 nanocomposite photoelectrodes produced by electrochemical anodisation of titanium. Surface Engineering, 2016, 32(7): 520–525CrossRefGoogle Scholar
  14. 14.
    Momeni M M, Ghayeb Y. Photoelectrochemical water splitting on chromium-doped titanium dioxide nanotube photoanodes prepared by single-step anodizing. Journal of Alloys and Compounds, 2015, 637: 393–400CrossRefGoogle Scholar
  15. 15.
    Momeni M M, Ghayeb Y. Fabrication, characterization and photoelectrochemical performance of chromium-sensitized titania nanotubes as efficient photoanodes for solar water splitting. Journal of Solid State Electrochemistry, 2016, 20(3): 683–689CrossRefGoogle Scholar
  16. 16.
    Momeni M M. Dye-sensitized solar cell and photocatalytic performance of nanocomposite photocatalyst prepared by electrochemical anodization. Bulletin of Materials Science, 2016, 39(6): 1389–1395CrossRefGoogle Scholar
  17. 17.
    Momeni M M, Ghayeb Y. Fabrication, characterization and photoelectrochemical behavior of Fe–TiO2 nanotubes composite photoanodes for solar water splitting. Journal of Electroanalytical Chemistry, 2015, 751: 43–48CrossRefGoogle Scholar
  18. 18.
    Momeni M M, Ghayeb Y. Cobalt modified tungsten–titania nanotube composite photoanodes for photoelectrochemical solar water splitting. Journal of Materials Science Materials in Electronics, 2016, 27(4): 3318–3327CrossRefGoogle Scholar
  19. 19.
    Ghayeb Y, Momeni M M. Solar water-splitting using palladium modified tungsten trioxide-titania nanotube photocatalysts. Journal of Materials Science Materials in Electronics, 2016, 27(2): 1805–1811CrossRefGoogle Scholar
  20. 20.
    Momeni M M, Ghayeb Y, Ghonchegi Z. Fabrication and characterization of copper doped TiO2 nanotube arrays by in situ electrochemical method as efficient visible-light photocatalyst. Ceramics International, 2015, 41(7): 8735–8741CrossRefGoogle Scholar
  21. 21.
    Ge M Z, Cao C Y, Li S H, Tang Y X, Wang L N, Qi N, Huang J Y, Zhang K Q, Al-Deyab S S, Lai Y K. In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting. Nanoscale, 2016, 8(9): 5226–5234CrossRefGoogle Scholar
  22. 22.
    Momeni M M, Ghayeb Y. Photoinduced deposition of gold nanoparticles on TiO2-WO3 nanotube films as efficient photoanodes for solar water splitting. Applied Physics. A, 2016, 122(6): 620CrossRefGoogle Scholar
  23. 23.
    Momeni M M, Ghayeb Y. Visible light-driven photoelectrochemical water splitting on ZnO-TiO2 heterogeneous nanotube photoanodes. Journal of Applied Electrochemistry, 2015, 45(6): 557–566CrossRefGoogle Scholar
  24. 24.
    Momeni M M, Ghayeb Y, Davarzadeh M. Single-step electrochemical anodization for synthesis of hierarchical WO3-TiO2 nanotube arrays on titanium foil as a good photoanode for water splitting with visible light. Journal of Electroanalytical Chemistry, 2015, 739: 149–155CrossRefGoogle Scholar
  25. 25.
    Ge M Z, Li S H, Huang J Y, Zhang K Q, Al-Deyab S S, Lai Y K. TiO2 nanotube arrays loaded with reduced graphene oxide films: facile hybridization and promising photocatalytic application. Journal of Materials Chemistry. A, 2015, 3(7): 3491–3499CrossRefGoogle Scholar
  26. 26.
    Ge M, Li Q, Cao C, Huang J, Li S, Zhang S, Chen Z, Zhang K, Al-Deyab S S, Lai Y. One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Advancement of Science, 2017, 4(1): 1600152Google Scholar
  27. 27.
    Beydoun D, Amal R, Low G, McEvoy S. Role of nanoparticles in photocatalysis. Journal of Nanoparticle Research, 1999, 1(4): 439–458CrossRefGoogle Scholar
  28. 28.
    Iliev V, Tomova D, Rakovsky S, Eliyas A, Puma G L. Enhancement of photocatalytic oxidation of oxalic acid by gold modified WO3/ TiO2 photocatalysts under UV and visible light irradiation. Journal of Molecular Catalysis A Chemical, 2010, 327(1–2): 51–57CrossRefGoogle Scholar
  29. 29.
    Lee W J, Shinde P S, Go G H, Ramasamy E. Ag grid induced photocurrent enhancement in WO3 photoanodes and their scale-up performance toward photoelectrochemical H2 generation. International Journal of Hydrogen Energy, 2011, 36(9): 5262–5270CrossRefGoogle Scholar
  30. 30.
    Subash B, Krishnakumar B, Pandiyan V, Swaminathan M, Shanthi M. Synthesis and characterization of novel WO3 loaded Ag–ZnO and its photocatalytic activity. Materials Research Bulletin, 2013, 48 (1): 63–69CrossRefGoogle Scholar
  31. 31.
    Khare C, Sliozberg K, Meyer R, Savan A, Schuhmann W, Ludwig A. Layered WO3/TiO2 nanostructures with enhanced photocurrent densities. International Journal of Hydrogen Energy, 2013, 38(36): 15954–15964CrossRefGoogle Scholar
  32. 32.
    Rajeshwar K, McConnell R, Licht S. Solar Hydrogen Generation: Toward a Renewable Energy Future. New York: Springer, 2008CrossRefGoogle Scholar
  33. 33.
    Choi T, Kim J S, Kim J H. Transparent nitrogen doped TiO2/WO3 composite films for self-cleaning glass applications with improved photodegradation activity. Advanced Powder Technology, 2016, 27 (2): 347–353CrossRefGoogle Scholar
  34. 34.
    Dozzi M V, Marzorati S, Longhi M, Coduri M, Artiglia L, Selli E. Photocatalytic activity of TiO2-WO3 mixed oxides in relation to electron transfer efficiency. Applied Catalysis B: Environmental, 2016, 186: 157–165CrossRefGoogle Scholar
  35. 35.
    Srinivasan A, Miyauchi M. Chemically stable WO3 based thin-film for visible light induced oxidation and superhydrophilicity. Journal of Physical Chemistry C, 2012, 116(29): 15421–15426CrossRefGoogle Scholar
  36. 36.
    Souvereyns B, Elen K, De Dobbelaere C, Kelchtermans A, Peys N, D’Haen J, Mertens M, Mullens S, Van den Rul H, Meynen V, Cool P, Hardy A, Van Bael M K. Hydrothermal synthesis of a concentrated and stable dispersion of TiO2 nanoparticles. Chemical Engineering Journal, 2013, 223: 135–144CrossRefGoogle Scholar
  37. 37.
    Somasundaram S, Chenthamarakshan C R, de Tacconi N R, Basit N A, Rajeshwar K. Composite WO3-TiO2 films: pulsed electrodeposition from a mixed bath versus sequential deposition from twin baths. Electrochemistry Communications, 2006, 8(4): 539–543CrossRefGoogle Scholar
  38. 38.
    Shiyanovskaya I, Hepel M. Bicomponent WO3/TiO2 films as photoelectrodes. Journal of the Electrochemical Society, 1999, 146 (1): 243–249CrossRefGoogle Scholar
  39. 39.
    Shiyanovskaya I, Hepel M. Decrease of recombination losses in bicomponent WO3/TiO2 films photosensitized with cresyl violet and thionine. Journal of the Electrochemical Society, 1998, 145(11): 3981–3985CrossRefGoogle Scholar
  40. 40.
    He T, Ma Y, Cao Y, Hu X, Liu H, Zhang G, Yang W, Yao J. Photochromism of WO3 colloids combined with TiO2 nanoparticles. Journal of Physical Chemistry. B, 2002, 106(49): 12670–12676CrossRefGoogle Scholar
  41. 41.
    He Y, Wu Z, Fu L, Li C, Miao Y, Cao L, Fan H, Zou B. Photochromism and size effect of WO3 and WO3-TiO2 aqueous sol. Chemistry of Materials, 2003, 15(21): 4039–4045CrossRefGoogle Scholar
  42. 42.
    Paramasivam I, Nah Y C, Das C, Shrestha N K, Schmuki P. WO3/ TiO2 nanotubes with strongly enhanced photocatalytic activity. Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 16(30): 8993–8997Google Scholar
  43. 43.
    Nazari M, Golestani-Fard F, Bayati R, Eftekhari-Yekta B. Enhanced photocatalytic activity in anodized WO3-loaded TiO2 nanotubes. Superlattices and Microstructures, 2015, 80: 91–101CrossRefGoogle Scholar
  44. 44.
    Momeni M, Ghayeb Y. Fabrication, characterization and photocatalytic properties of Au/TiO2-WO3 nanotubular composite synthesized by photo-assisted deposition and electrochemical anodizing methods. Journal of Molecular Catalysis. A: Chemical, 2016, 417: 107–115CrossRefGoogle Scholar
  45. 45.
    Zhong M, Zhang G, Yang X. Preparation of Ti mesh supported WO3/TiO2 nanotubes composite and its application for photocatalytic degradation under visible light. Materials Letters, 2015, 145: 216–218CrossRefGoogle Scholar
  46. 46.
    Ali H, Ismail N, Hegazy A, Mekewi M. A novel photoelectrode from TiO2-WO3 nanoarrays grown on FTO for solar water splitting. Electrochimica Acta, 2014, 150: 314–319CrossRefGoogle Scholar
  47. 47.
    de Tacconi N R, Chenthamarakshan C R, Rajeshwar K, Pauporté T, Lincot D. Pulsed electrodeposition of WO3-TiO2 composite films. Electrochemistry Communications, 2003, 5(3): 220–224CrossRefGoogle Scholar
  48. 48.
    Ruan C, Paulose M, Varghese O K, Mor G K, Grimes C A. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. Journal of Physical Chemistry. B, 2005, 109(33): 15754–15759CrossRefGoogle Scholar
  49. 49.
    Ali H, Ismail N, Mekewi M, Hengazy A C. Facile one-step process for synthesis of vertically aligned cobalt oxide doped TiO2 nanotube arrays for solar energy conversion. Journal of Solid State Electrochemistry, 2015, 19(10): 3019–3026CrossRefGoogle Scholar
  50. 50.
    Ma J, Yang M, Sun Y, Li C, Li Q, Gao F, Yu F, Chen J. Fabrication of Ag/TiO2 nanotube array with enhanced photocatalytic degradation of aqueous organic pollutant. Physica E, Low-Dimensional Systems and Nanostructures, 2014, 58: 24–29CrossRefGoogle Scholar
  51. 51.
    Li Y, Yu H, Zhang C, Song W, Li G, Shao Z, Yi B. Effect of water and annealing temperature of anodized TiO2 nanotubes on hydrogen production in photoelectrochemical cell. Electrochimica Acta, 2013, 107: 313–319CrossRefGoogle Scholar
  52. 52.
    Xie K, Sun L, Wang C, Lai Y, Wang M, Chen H, Lin C. Photoelectrocatalytic properties of Ag nanoparticles loaded TiO2 nanotube arrays prepared by pulse current deposition. Electrochimica Acta, 2010, 55(24): 7211–7218CrossRefGoogle Scholar
  53. 53.
    Bai S, Liu H, Sun J, Tian Y, Chen S, Song J, Luo R, Li D, Chen A, Liu C C. Improvement of TiO2 photocatalytic properties under visible light by WO3/TiO2 and MoO3/TiO2 composites. Applied Surface Science, 2015, 338: 61–68CrossRefGoogle Scholar
  54. 54.
    Smith Y R, Sarma B, Mohanty S K, Misra M. Formation of TiO2-WO3 nanotubular composite via single-step anodization and its application in photoelectrochemical hydrogen generation. Electrochemistry Communications, 2012, 19: 131–134CrossRefGoogle Scholar
  55. 55.
    Palmas S, Castresana P A, Mais L, Vacca A, Mascia M, Ricci P C. TiO2-WO3 nanostructured systems for photoelectrochemical applications. RSC Advances, 2016, 6(103): 101671–101682CrossRefGoogle Scholar
  56. 56.
    Yoong L S, Chong F K, Dutta B K. Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light. Energy, 2009, 34(10): 1652–1661CrossRefGoogle Scholar
  57. 57.
    Kuvarega A T, Krause R W M, Mamba B B. Multiwalled carbon nanotubes decorated with nitrogen, palladium co-doped TiO2 (MWCNT/N, Pd co-doped TiO2) for visible light photocatalytic degradation of Eosin Yellow in water. Journal of Nanoparticle Research, 2012, 14(4): 776–791CrossRefGoogle Scholar
  58. 58.
    Kubelka P, Munk F. A contribution to the look of the paints. Journal of Technical Physics, 1931, 12: 593–601Google Scholar
  59. 59.
    Riboni F, Bettini L G, Bahnemann DW, Selli E.WO3-TiO2 vs. TiO2 photocatalysts: effect of the W precursor and amount on the photocatalytic activity of mixed oxides. Catalysis Today, 2013, 209: 28–34CrossRefGoogle Scholar
  60. 60.
    Park J H, Park O O, Kim S. Photoelectrochemical water splitting at titanium dioxide nanotubes coated with tungsten trioxide. Applied Physics Letters, 2006, 89(16): 163106CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Heba Ali
    • 1
  • N. Ismail
    • 1
  • M. S. Amin
    • 2
    • 3
  • Mohamed Mekewi
    • 3
  1. 1.Physical Chemistry DepartmentNational Research CentreDokki, CairoEgypt
  2. 2.Chemistry Department, Faculty of ScienceAin Shams UniversityAbbassia, CairoEgypt
  3. 3.Chemistry Department, Faculty of ScienceTaibah UniversityMadinah MunawwarahSaudi Arabia

Personalised recommendations