Advertisement

Achievements and trends of solid oxide fuel cells in clean energy field: a perspective review

  • Abdalla M. Abdalla
  • Shahzad Hossain
  • Pg MohdIskandr Petra
  • Mostafa Ghasemi
  • Abul K. Azad
Review Article
  • 38 Downloads

Abstract

The main concerns in the world today, especially in the energy field, are subjected to clean, efficient, and durable sources of energy. These three aspects are the main goals that scientist are paying attention to. However, the various types of energy resources include fossil and sustainable ones, but still some challenges are chasing these kinds from energy conversion, storage, and efficiency. Hence, the most reliable and considered energy resource nowadays is the utilized one which is as highly efficient, clean, and everlasting as possible. So, in this review, an attempt is made to highlight one of the promising types as a clean and efficient energy resource. Solid oxide fuel cell (SOFC) is the most efficient type of the fuel cell types involved with hydrogen and hydrocarbon-based fuels, especially when it works with combined heat and power (CHP). The importance of this type is due to its nature of work as conversion tool from chemical to electrical for generation of power without noise, pollution, and can be safely handled.

Keywords

solid oxide fuel cells (SOFCs) clean energy design micro-scale nano-scale performance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Graduate Research Scholarship (GRS) granted by the Graduate Research Office of Univeristi Brunei Darussalam.

References

  1. 1.
    Pfenninger S, Keirstead J. Renewables, nuclear, or fossil fuels? Scenarios for Great Britain’s power system considering costs, emissions and energy security. Applied Energy, 2015, 152: 83–93CrossRefGoogle Scholar
  2. 2.
    Johnson Matthey P L C. Fuel cell today. 2016–12–10, http://www. fuelcelltoday.com/historyGoogle Scholar
  3. 3.
    Jeong J, Azad A K, Schlegl H, Kim B, Baek S, Kim K, Kang H, Hyun J. Structural, thermal and electrical conductivity characteristics of Ln0.5Sr0.5Ti0.5Mn0.5O3±d (Ln: La, Nd and Sm) complex perovskites as anode materials for solid oxide fuel cell. Journal of Solid State Chemistry, 2015, 226:154–163CrossRefGoogle Scholar
  4. 4.
    Chen F F. The Future of Energy I: Fossil Fuels. New York: Springer, 2011: 43–73Google Scholar
  5. 5.
    Menzler N H, Tietz F, Uhlenbruck S, Buchkremer H P, Stöver D. Materials and manufacturing technologies for solid oxide fuel cells. Journal of Materials Science, 2010, 45(12): 3109–3135CrossRefGoogle Scholar
  6. 6.
    Haile S M. Fuel cell materials and components. Acta Materialia, 2003, 51(19): 5981–6000CrossRefGoogle Scholar
  7. 7.
    Johnson Matthey P L C. Fuel cell today: the fuel cell industry review 2013. 2017–1–20, http://fuelcelltoday.com/media/1889744/fct_review_2013.pdf.Google Scholar
  8. 8.
    Jiang S P, Chan S H. A review of anode materials development in solid oxide fuel cells. Journal of Materials Science, 2004, 39(14): 4405–4439CrossRefGoogle Scholar
  9. 9.
    Suntivich J, Gasteiger H A, Yabuuchi N, Nakanishi H. Goodenough J B, Shao-Horn Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nature Chemistry, 2011, 3(8): 647CrossRefGoogle Scholar
  10. 10.
    Azad A K, Kim J H, Irvine J T S. Structural, electrochemical and magnetic characterization of the layered-type PrBa0.5Sr0.5Co2O5+δ perovskite. Journal of Solid State Chemistry, 2014, 213: 268–274CrossRefGoogle Scholar
  11. 11.
    Azad A, Irvine J. High density and low temperature sintered proton conductor BaCe0.5Zr0.35Sc0.1Zn0.05O3–d. Solid State Ionics, 2008, 179(19–20): 678–682CrossRefGoogle Scholar
  12. 12.
    Rossmeisl J, Bessler W G. Trends in catalytic activity for SOFC anode materials. Solid State Ionics, 2008, 178(31–32): 1694–1700CrossRefGoogle Scholar
  13. 13.
    Satyapal S. Expanding the use of biogas with fuel cell technologies. National Renewable Energy Laboratory, 2013, 7: 1–42Google Scholar
  14. 14.
    Tarancón A, Burriel M, Santiso J, Skinner S J, Kilner J A. Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells. Journal of Materials Chemistry, 2010, 20 (19): 3799–3813CrossRefGoogle Scholar
  15. 15.
    Lu L, Ni C, Cassidy M, John T S I. Demonstration of high performance in a perovskite oxide supported solid oxide fuel cell based on La and Ca co-doped SrTiO3. Journal of Materials Chemistry A, 2016, 4(30): 11708–11718CrossRefGoogle Scholar
  16. 16.
    Chen F F. The Future of Energy I: Chapter 2. Fossil Fuels. New York: Springer, 2011: 53–63Google Scholar
  17. 17.
    Chen Y, Zhou W, Ding D, Liu M, Ciucci F, Tade M, Shao Z. Advances in cathode materials for solid oxide fuel cells: complex oxides without alkaline earth metal elements. Advanced Energy Materials, 2015, 5(18): 15005–15037Google Scholar
  18. 18.
    Gao Z, Mogni L, Miller E C, Railsback J, Barnet S A. A perspective on low-temperature solid oxide fuel cells. Energy & Environmental Science, 2016, 9(5): 1602–1644CrossRefGoogle Scholar
  19. 19.
    Möbius H H. High Temperature and Solid Oxide Fuel Cells: Chapter 2-History. Oxford: Elsevier, 2003: 23–51CrossRefGoogle Scholar
  20. 20.
    Cook B. Introduction to fuel cells and hydrogen technology. Engineering Science & Education Journal, 2002, 11(6): 205–216CrossRefGoogle Scholar
  21. 21.
    Andjar J M, Segura F. Fuel cells: history and updating. A walk along two centuries. Renewable & Sustainable Energy Reviews, 2009, 13(9): 2309–2322CrossRefGoogle Scholar
  22. 22.
    Smithsonian Institution. Fuel cell origins: 1840–1890. 2015–12–10, http://americanhistory.si.edu/fuelcells/origins/origins.htmGoogle Scholar
  23. 23.
    National Aeronautics and Space Administration. Solid oxid fuel cells and electrolysis membranes. 2010–2–2, https://www.grc. nasa.gov/WWW/StructuresMaterials/Ceramics/research_solid. htmlGoogle Scholar
  24. 24.
    Gross J H. Fuel cell technology. Joint Legislative air and water pollution committee, 2002, 2(1): 1–7Google Scholar
  25. 25.
    US. Department of Energy. Fuel Cell Handbook. University Press of the Pacific, 2005Google Scholar
  26. 26.
    Tesfai A, John T S I. Solid oxides fuel cells: theory and material. Comprehensive Renewable Energy, 2012, 38(48): 261–276CrossRefGoogle Scholar
  27. 27.
    Frade J R. Theoretical behaviour of concentration cells based on ABO3 perovskite materials with protonic and oxygen ion conduction. Solid State Ionics, 1995, 78(1–2): 87–97CrossRefGoogle Scholar
  28. 28.
    Tietz F, Buchkremer H P, Stöver D. 10 years of materials research for solid oxide fuel cells. Journal of Electroceramics, 2006, 17(2–4): 701–707CrossRefGoogle Scholar
  29. 29.
    Huang X, Ni C, Zhao G, John T S I. Oxygen storage capacity and thermal stability of the CuMnO2–CeO2 composite system. Journal of Materials Chemistry A, 2015, 3(24): 12958–12964CrossRefGoogle Scholar
  30. 30.
    ChemViews. Fuel cell capacity and cost trends. 2017–1–5, http://www.chemistryviews.org/details/ezine/4817371/Fuel_Cell_Capacity_and_Cost_Trends.htmlGoogle Scholar
  31. 31.
    Föger K. Materials basics for fuel cells. Materials for Fuel Cells, 2008, 14(4): 6–63CrossRefGoogle Scholar
  32. 32.
    Patent Elseveir. Materials, processes for producing fuel cells and active membranes. Fuel Cells Bulletin, 2001, 4(34):14Google Scholar
  33. 33.
    Patent Elseveir. Electrocatalyst particles for fuel cells. Focus on Catalysts, 2009, 2009(2): 8Google Scholar
  34. 34.
    Rikkinen E, Santasalo-Aarnio A, Airaksinen S, Borghei M, Viitanen V, Sainio J, Kauppinen E I, Kallio T, Outi A, Krause I. Atomic layer deposition preparation of Pd nanoparticles on a porous carbon support for alcohol oxidation. Journal of Physical Chemistry C, 2011, 115(46): 23067CrossRefGoogle Scholar
  35. 35.
    Smotkin E S, Ley K L, Pu C, Liu R. Catalysts for direct oxidation fuel cells. USA Patent, WO98/40161, 1998–09–17Google Scholar
  36. 36.
    Metodiev T V. Gold catalyst for fuel cells. Fuel Cells Bulletin, 1999, 2(9): 16Google Scholar
  37. 37.
    Elseveir News. Materials for fuel cells examined. Membrane Technology, 2008, 2008(10): 8Google Scholar
  38. 38.
    Sundmacher K, Hanke-Rauschenbach R, Heidebrecht P, Rihko-Struckmann L, Vidaković-Koch T. Some reaction engineering challenges in fuel cells: dynamics integration, renewable fuels, enzymes. Current Opinion in Chemical Engineering, 2012, 1(3): 328–335CrossRefGoogle Scholar
  39. 39.
    Hemmes K, Kamp LM, Vernay A B H, de Werk G. A multi-source multi-product internal reforming fuel cell energy system as a stepping stone in the transition towards a more sustainable energy and transport sector. International Journal of Hydrogen Energy, 2011, 36(16): 10221–10227CrossRefGoogle Scholar
  40. 40.
    Bengt S, Juan F. Heat Transfer in Aerospace Applications Chapter 8–Fuel Cells. London: Elsevier, 2017: 145–153Google Scholar
  41. 41.
    Irshad M, Siraj K, Raza R, Ali A, Tiwari P, Zhu B, Rafique A, Kaleem U, Usman A. A brief description of high temperature solid oxide fuel cell’s operation, materials, design, fabrication technologies and performance. Applied Sciences, 2016, 6(3): 75CrossRefGoogle Scholar
  42. 42.
    Singhal S C. Solid oxide fuel cells: an overview. Preprint Papers- American Chemical Society, Division of Fuel Chemistry, 2004, 49 (2): 478Google Scholar
  43. 43.
    Dollard W J. Solid oxide fuel cell development at Westinghouse. Journal of Power Sources, 1992, 37(1–2): 133–139CrossRefGoogle Scholar
  44. 44.
    Laosiripojana N, Wiyaratn W, Kiatkittipong W, Arpornwichanop A, Soottitantawat A, Assabumrungrat S. Review on solid oxide fuel cell technology. Engineering Journal, 2009, 13(1): 0125–8281CrossRefGoogle Scholar
  45. 45.
    Tesfai A, Connor P, Nairn J, Irvine J T S. Thermal cycling evaluation of rolled tubular solid oxide fuel cells. Journal of Fuel Cell Science and Technology, 2011, 8(6): 061001CrossRefGoogle Scholar
  46. 46.
    Ge X M, Chan S H, Liu Q L, Sun Q. Solid oxide fuel cell anode materials for direct hydrocarbon utilization. Advanced Energy Materials, 2012, 2(10): 1156–1181CrossRefGoogle Scholar
  47. 47.
    Bharadwaj S R, Varma S, Wani B N. Electroceramics for fuel cells, batteries and sensors.In: Functional Materials, 2012: 639–674CrossRefGoogle Scholar
  48. 48.
    Michalovic M. Fuel cells oxidation reaction. ChemMatters, 2007: 16–19Google Scholar
  49. 49.
    Gasik M. Materials for Fuel Cells. Cambridge: Woodhead Publishing Limited, 2008CrossRefGoogle Scholar
  50. 50.
    Shaikh S P S, Muchtar A, Somalu M R. A review on the selection of anode materials for solid-oxide fuel cells. Renewable & Sustainable Energy Reviews, 2015, 51: 1–8CrossRefGoogle Scholar
  51. 51.
    Tao S, Irvine J T S. Optimization of mixed conducting properties of Y2O3-ZrO2-TiO2 and Sc2O3-Y2O3-ZrO2-TiO2 solid solutions as potential SOFC anode materials. Journal of Solid State Chemistry, 2002, 165(1): 12–18CrossRefGoogle Scholar
  52. 52.
    Azad A K, Zaini J, Petra P I, Ming L C, Eriksson S G. Effect of Nd-doping on structural, thermal and electrochemical properties of LaFe0.5Cr0.5O3 perovskites. Ceramics International, 2016, 42(3): 4532–4538CrossRefGoogle Scholar
  53. 53.
    Lee S, Bae J, Katikaneni S P. La0.8Sr0.2Cr0.95Ru0.05O3–x and Sm0.8Ba0.2Cr0.95Ru0.05O3–x as partial oxidation catalysts for diesel. International Journal of Hydrogen Energy, 2014, 39(10): 4938–4946CrossRefGoogle Scholar
  54. 54.
    Menzler N H, Sebold D, Wessel E. Interaction of La0.58Sr0.40Co0.20Fe0.80O3–δ cathode with volatile Cr in a stack test—scanning electron microscopy and transmission electron microscopy investigations. Journal of Power Sources, 2014, 254: 148–152CrossRefGoogle Scholar
  55. 55.
    Sun X F, Wang S R, Wang Z R, Qian J Q, Wen T L, Huang F Q. Evaluation of Sr0.88Y0.08TiO3–CeO2 as composite anode for solid oxide fuel cells running on CH4 fuel. Journal of Power Sources, 2009, 187(1): 85–89CrossRefGoogle Scholar
  56. 56.
    Steiner H J, Middleton P H, Steele B C H. Ternary titanates as anode materials for solid oxide fuel cells. Journal of Alloys and Compounds, 1993, 190(2): 279–285CrossRefGoogle Scholar
  57. 57.
    Pihlatie M H, Kaiser A, Mogensen M B. Electrical conductivity of Ni–YSZ composites: variants and redox cycling. Solid State Ionics, 2012, 222–223(222): 38–46CrossRefGoogle Scholar
  58. 58.
    Safeen K, Micheli V, Bartali R, Gottardi G, Safeen A, Ullah H, Laidani N. Synthesis of conductive and transparent Nb-doped TiO2 films: role of the target material and sputtering gas composition. Materials Science in Semiconductor Processing, 2017, 66: 74–80CrossRefGoogle Scholar
  59. 59.
    Han J, Sun Q, Song Y. Enhanced thermoelectric properties of La and Dy co-doped, Sr-deficient SrTiO3 ceramics. Journal of Alloys and Compounds, 2017, 705: 22–27CrossRefGoogle Scholar
  60. 60.
    Ideris A, Croiset E, Pritzker M. Ni-samaria-doped ceria (Ni-SDC) anode-supported solid oxide fuel cell (SOFC) operating with CO. International Journal of Hydrogen Energy, 2016, 42(14): 9180–9187CrossRefGoogle Scholar
  61. 61.
    Gondolini A, Mercadelli E, Sangiorgi A, Sanson A. Integration of Ni-GDC layer on a NiCrAl metal foam for SOFC application. Journal of the European Ceramic Society, 2017, 37(3): 1023–1030CrossRefGoogle Scholar
  62. 62.
    Sarıboğa V, Faruk Oksüzomer M A. Cu-CeO2 anodes for solid oxide fuel cells: determination of infiltration characteristics. Journal of Alloys and Compounds, 2016, 688: 323–331CrossRefGoogle Scholar
  63. 63.
    Light N, Kesler O. Air plasma sprayed Cu-Co-GDC anode coatings with various Co loadings. Journal of Power Sources, 2013, 233: 157–165CrossRefGoogle Scholar
  64. 64.
    Droushiotis N, Grande F D, Dzarfan Othman M H, Kanawka K, Doraswami U, Metcalfe I S, Li K, Kelsall G. Comparison between anode-supported and electrolyte-supported Ni-CGO-LSCF microtubular solid oxide. Fuel Cells (Weinheim), 2014, 14(2): 200–211CrossRefGoogle Scholar
  65. 65.
    Patil K C, Hegde M S, Rattan T, Aruna S T. Zirconia and related oxide materials. Chemistry of Nanocrystalline Oxide Materials, 2008: 212–225CrossRefGoogle Scholar
  66. 66.
    Hossain S, Abdalla A M, Jamain S N B, Zaini J H, Azad A K. A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renewable & Sustainable Energy Reviews, 2017, 79: 750–764CrossRefGoogle Scholar
  67. 67.
    Brochu M, Loehman R E. Hermetic sealing of solid oxide fuel cells. Microjoining and Nanojoining, 2000:718–740Google Scholar
  68. 68.
    Steele B C H, Heinzel A. Materials for fuel-cell technologies. Nature, 2001, 414(6861): 345–352CrossRefGoogle Scholar
  69. 69.
    Haile SM. Materials for fuel cells. Materials today, 2003, 6(3): 24–29CrossRefGoogle Scholar
  70. 70.
    Sun C, Hui R, Roller J. Cathode materials for solid oxide fuel cells. Journal of Solid State Electrochemistry, 2010, 14(7): 1125–1144CrossRefGoogle Scholar
  71. 71.
    Kim Y N, Kim J H, Huq A, Paranthaman M P, Manthiram A. (Y0.5In0.5)Ba(Co,Zn)4O7 cathodes with superior high-temperature phase stability for solid oxide fuel cells. Journal of Power Sources, 2012, 214(4): 7–14CrossRefGoogle Scholar
  72. 72.
    Sammes NM, Roy B R. Reference module in chemistry, molecular sciences and chemical engineering. Encyclopedia of Electrochem Power Sources, 2009, 25–33CrossRefGoogle Scholar
  73. 73.
    McCarthy B P, Pederson L R, Chou Y S, Zhou X D, Surdoval W A, Wilson L C. Low-temperature sintering of lanthanum strontium manganite-based contact pastes for SOFCs. Journal of Power Sources, 2008, 180(1): 294–300CrossRefGoogle Scholar
  74. 74.
    Meixner D L, Cutler R A. Sintering and mechanical characteristics of lanthanum strontium manganite. Solid State Ionics, 2002, 146 (3–4): 273–284CrossRefGoogle Scholar
  75. 75.
    Khandale P, Lajurkar R P, Bhoga S S. Nd1.8Sr0.2NiO4–δ: Ce0.9Gd0.1O2–δ composite cathode for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2014, 39(33): 19039–19050CrossRefGoogle Scholar
  76. 76.
    Jeong C, Lee J H, Park M, Hong J, Kim H, Son J W, Lee J H, Kim B K, Yoon K J. Design and processing parameters of La2NiO4 + δ–based cathode for anode-supported planar solid oxide fuel cells (SOFCs). Journal of Power Sources, 2015, 297: 370–378CrossRefGoogle Scholar
  77. 77.
    Meng F, Xia T, Wang J, Shi Z, Zhao H. Praseodymium-deficiency Pr0.94BaCo2O6–δ double perovskite: a promising high performance cathode material for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2015, 293: 741–750CrossRefGoogle Scholar
  78. 78.
    Jarot R, Muchtar A, Dawoud W R W, Muhamad N, Majlanlie E H. Fabrication of porous LSCF-SDC carbonates composite cathode for solid oxide fuel cell (SOFC) applications. Key Engineering Materials, 2011, 471–472: 179–184CrossRefGoogle Scholar
  79. 79.
    Kim J H, Cassidy M, Irvine J T S, Bae J. Advanced electrochemical properties of LnBa0.5Sr0.5Co2O5 + d (Ln = Pr, Sm, and Gd) as cathode materials for IT-SOFC. Journal of the Electrochemical Society, 2009, 156(6): B682–B689CrossRefGoogle Scholar
  80. 80.
    Wincewicz K C, Cooper J S. Taxonomies of SOFC material and manufacturing alternatives. Journal of Power Sources, 2005, 140 (2): 280–296CrossRefGoogle Scholar
  81. 81.
    Bastawors A. Crystal structure metals-ceramics: material science and engineering. 2001–1–31, http://studylib.net/doc/10619426/crystal-structure-ashraf-bastawros-ceramic-crystal-structGoogle Scholar
  82. 82.
    Bhushan B. Scanning Probe Microscopy in Nanoscience and Nanotechnology: Chapter 17. Berlin: Springer, 2009: 615Google Scholar
  83. 83.
    Peña M A, Fierro J L G. Chemical structures and performance of perovskite oxides. Chemical Reviews, 2001, 101(7): 1981–2018CrossRefGoogle Scholar
  84. 84.
    Luxová J, Šulcová P, Trojan M. Study of perovskite compounds. Thermal Analysis and Calorimetry, 2008, 93(3): 823–827CrossRefGoogle Scholar
  85. 85.
    Bhalla A S, Guo R, Roy R. The perovskite structure—a review of its role in ceramic science and technology. Materials Research Innovations, 2000, 4(1): 3–26CrossRefGoogle Scholar
  86. 86.
    Johnsson M, Lemmens P. Introduction to advanced ceramics. Cornel Digital Library, 2001:1–11Google Scholar
  87. 87.
    Azad A K. Synthesis, structure and magnetic properties of double perovskite of the type A2MnBO6. Dissertation for the Doctoral Degree. Gotebrg: Gotebrg University, 2004Google Scholar
  88. 88.
    Andreassson J. Inelastic light scattering study of strongly correlated oxides. Dissertation for the Doctoral Degree. Gotebrg: Gotebrg University, 2005Google Scholar
  89. 89.
    Materials Research Science and Engineering Centers. 2016–6–20, http://www.mrsec.org/researchGoogle Scholar
  90. 90.
    Kobayashi K I, Sawada H, Terakura K. Room-temperature magneto resistance in an oxide material with an ordered doubleperovskite structure. Nature, 1998, 395(6703): 677–680CrossRefGoogle Scholar
  91. 91.
    Dasgupta T S. Materials Modeling. 2015–9–15, http://www.bose. res.in/~tanusri/research.htmlGoogle Scholar
  92. 92.
    Witczakkrempa W, Gang C, Yong B K, Balents L. Correlated quantum phenomena in the strong spin-orbit regime. Annual Review of Condensed Matter Physics, 2013, 5(1): 57–82CrossRefGoogle Scholar
  93. 93.
    GRACE Communications Foundation. Fossil fuel and energy use. 2009, http://www. sustainabletable. orgGoogle Scholar
  94. 94.
    Cheddie D F. Integration of a solid oxide fuel cell into a 10MW gas turbine power plant. Energies, 2010, 3(4): 754–769CrossRefGoogle Scholar
  95. 95.
    Yokokawa H, Tu H H, Iwanschitz B, Mai A. Fundamental mechanisms limiting solid oxide fuel cell durability. Journal of Power Sources, 2008, 182(2): 400–412CrossRefGoogle Scholar
  96. 96.
    Goodenough J B. Electrochemical energy storage in a sustainable modern society. Energy & Environmental Science, 2013, 7(1): 14–18CrossRefGoogle Scholar
  97. 97.
    Stambouli A B, Traversa E. Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renewable & Sustainable Energy Reviews, 2002, 6(5): 433–455CrossRefGoogle Scholar
  98. 98.
    Orera V M, Laguna-Bercero M A, Larrea A. Fabrication methods and performance in fuel cell and steam electrolysis operation modes of small tubular solid oxide fuel cells: a review. Frontiers in Energy Research, 2014, 2: 1–13CrossRefGoogle Scholar
  99. 99.
    Kreysa G, Ota K I, Savinell R F. Encyclopedia of Applied Electrochemistry. New York: Springer, 2014CrossRefGoogle Scholar
  100. 100.
    Karton V V. Solid State Electrochemistry II: Electrodes, Interfaces and Ceramic Membranes. Wiley, 2011CrossRefGoogle Scholar
  101. 101.
    Prinz F B, Hayre R O, Lee M. Micro and nano scale electrochemistry: application to fuel cells. GCEP Technical Report, 2004Google Scholar
  102. 102.
    CERAMIC INDUSTRY. CERAMIC ENERGY: Advances in SOFC materials and manufacturing. 2004–9–1, https://www. ceramicindustry.com/articles/86115-ceramic-energy-advances-insofc- materials-and-manufacturingGoogle Scholar
  103. 103.
    Bieberle-Hütter A, Galinski H, Rupp J L M, Ryll T, Scherrer B, Tölke R, Gauckler L J. Micro-solid oxide fuel cells: status, challenges, and chances. Monatshefte für Chemie, 2009, 140(9): 975–983CrossRefGoogle Scholar
  104. 104.
    Abdalla M A, Hossain S, Azad A T, Petra P M I, Begum F, Eriksson S G, Azad A K. Nanomaterials for solid oxide fuel cells: a review. Renewable & Sustainable Energy Reviews, 2018, 82: 353–368CrossRefGoogle Scholar
  105. 105.
    Cook B. Introduction to fuel cells and hydrogen technology. Engineering Science & Education Journal, 2002, 11(6): 205–216CrossRefGoogle Scholar
  106. 106.
    Mazumder S K, Acharya K, Haynes C L, Williams R, von Spakovsky MR, Nelson D J, Rancruel D F, Hartvigsen J, Gemmen R S. Solid-oxide-fuel-cell performance and durability: resolution of the effects of power-conditioning systems and application loads. IEEE Transactions on Power Electronics, 2004, 19(5): 1263–1278CrossRefGoogle Scholar
  107. 107.
    Boder M, Dittmeyer R. Catalytic modification of conventional SOFC anodes with a view to reducing their activity for direct internal reforming of natural gas. Journal of Power Sources, 2006, 155(1): 13–22CrossRefGoogle Scholar
  108. 108.
    Weber A, Ivers-Tiffée E. Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications. Journal of Power Sources, 2004, 127(1–2): 273–283CrossRefGoogle Scholar
  109. 109.
    Morse J D, Jankowski A F, Hayes J P, Graff R T. A novel thin film solid oxide fuel cell for microscale energy conversion. Micromachined Devices Components V, 1999, 3876: 223–226CrossRefGoogle Scholar
  110. 110.
    Rey-mermet S, Muralt P. Microfabricated solid oxide fuel cells. Epfl, 2009, 56(2):498–500Google Scholar
  111. 111.
    Evans A, Bieberle-Hütter A, Rupp J L M, Gauckler L J. Review on microfabricated micro-solid oxide fuel cell membranes. Journal of Power Sources, 2009, 194(1): 119–129CrossRefGoogle Scholar
  112. 112.
    Bieberle-Hütter A, Beckel D, Infortuna A, Muecke U P, Rupp J L M, Gauckler L J, Rey-Mermet S, Muralt P, Bieri N R, Hotz N, Stutz M J, Poulikakos D, Heeb P, Müller P, Bernard A, Gmüre R, Hocker T. A micro-solid oxide fuel cell system as battery replacement. Journal of Power Sources, 2008, 177(1): 123–130CrossRefGoogle Scholar
  113. 113.
    Sammes N, Galloway K, Yamaguchi T, Serincan M. Concept, manufacture and results of the microtubular solid oxide fuel cell. Transactions on Electrical and Electronic Materials, 2011, 12(1): 1–6CrossRefGoogle Scholar
  114. 114.
    Zhu B. Advanced hybrid ion conducting ceramic composites and applications in new fuel cell generation. Key Engineering Materials, 2007, 280–283: 413–418Google Scholar
  115. 115.
    Muecke U P, Beckel D, Bernard A, Bieberle H A, Graf S, Infortuna A. Micro solid oxide fuel cells on glass ceramic substrates. Advanced Functional Materials, 2010, 18(20):3158–3168CrossRefGoogle Scholar
  116. 116.
    Rey-Mermet S, Muralt P. Solid oxide fuel cell membranes supported by nickel grid anode. Solid State Ionics, 2008, 179 (27–32): 1497–1500CrossRefGoogle Scholar
  117. 117.
    Huang H, Nakamura M, Su P, Fasching R, Saito Y, Prinz F B. High-performance ultrathin solid oxide fuel cells for lowtemperature operation. Journal of the Electrochemical Society, 2007, 154(1): B20–B24CrossRefGoogle Scholar
  118. 118.
    Shim J H, Chao C C, Huango H, Prinz F B. Atomic layer deposition of yttria-stabilized zirconia for solid oxide fuel cells. Chemistry of Materials, 2007, 19(15): 3850–3854CrossRefGoogle Scholar
  119. 119.
    Kwon C W, Lee J, Kim K B, Lee H W, Lee J H, Son J W. The thermomechanical stability of micro-solid oxide fuel cells fabricated on anodized aluminum oxide membranes. Journal of Power Sources, 2012, 210(210): 178–183CrossRefGoogle Scholar
  120. 120.
    Su P C, Chao C C, Shim J H, Fasching R, Prinz F B. Solid oxide fuel cell with corrugated thin film electrolyte. Nano Letters, 2008, 8 (8): 2289CrossRefGoogle Scholar
  121. 121.
    Joo J H, Choi G M. Simple fabrication of micro-solid oxide fuel cell supported on metal substrate. Journal of Power Sources, 2008, 182(2): 589–593CrossRefGoogle Scholar
  122. 122.
    Kang S, Su P C, Park Y I, Saito Y, Prinz F B. Thin film solid oxide fuel cells on porous nickel substrates with multistage nanohole array. Journal of the Electrochemical Society, 2006, 153(3): A554–A559CrossRefGoogle Scholar
  123. 123.
    Shao Z, Haile S M, Ahn J, Ronney P D, Zhan Z, Barnett S A. A thermally self-sustained micro solid-oxide fuel-cell stack with high power density. Nature, 2005, 435(7043): 795–798CrossRefGoogle Scholar
  124. 124.
    Valadez T N, Norton J R, Neary M C. Reaction of Cp* (Cl)M (Diene) (M = Ti, Hf) with Isonitriles. Journal of the American Chemical Society, 2015, 137(32): 10152–10155CrossRefGoogle Scholar
  125. 125.
    Sholklapper T Z, Kurokawa H, Jacobson C P, Visco S J, de Jonghe L C. Nanostructured solid oxide fuel cell electrodes. Nano Letters, 2006, 7(7): 2136–2141CrossRefGoogle Scholar
  126. 126.
    Sata N, Eberman K, Eberl K, Maier J. Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature, 2000, 408(6815): 946–949CrossRefGoogle Scholar
  127. 127.
    Chockalingam R, Basu S. Impedance spectroscopy studies of Gd- CeO2-(LiNa)CO3 nano composite electrolytes for low temperature SOFC applications. International Journal of Hydrogen Energy, 2011, 36(22): 14977–14983CrossRefGoogle Scholar
  128. 128.
    Myung J H, Shin T H, Kim S D, Park H G, Moon J, Hyun S H. Optimization of Ni-zirconia based anode support for robust and high-performance 5-5 cm2 sized SOFC via tape-casting/co-firing technique and nano-structured anode. International Journal of Hydrogen Energy, 2015, 40(6): 2792–2799CrossRefGoogle Scholar
  129. 129.
    Shah M, Voorhees PW, Barnett S A. Time-dependent performance changes in LSCF-infiltrated SOFC cathodes: the role of nanoparticle coarsening. Solid State Ionics, 2011, 187(1): 64–67CrossRefGoogle Scholar
  130. 130.
    Tsuchiya M, Lai B K, Ramanathan S. Scalable nanostructured membranes for solid-oxide fuel cells. Nature Nanotechnology, 2011, 6(5): 282CrossRefGoogle Scholar
  131. 131.
    Zhang H, Zhao F, Chen F, Xia C. Nano-structured Sm0.5Sr0.5CoO3–δ electrodes for intermediate-temperature SOFCs with zirconia electrolytes. Solid State Ionics, 2011, 192 (1): 591–594CrossRefGoogle Scholar
  132. 132.
    Kerman K, Lai B, Ramanathan S. Nanoscale compositionally graded thin-film electrolyte membranes for low-temperature solid oxide fuel cells. Advanced Energy Materials, 2012, 2(6): 655–655CrossRefGoogle Scholar
  133. 133.
    Wang X, Huang H, Holme T, Tian X, Prinz F B. Thermal stabilities of nanoporous metallic electrodes at elevated temperatures. Journal of Power Sources, 2008, 175(1): 75–81CrossRefGoogle Scholar
  134. 134.
    Gu Y C, Lee Y H, Cha S W. Multi-component nano-composite electrode for SOFCS via thin film technique. Renewable Energy, 2014, 65(5):130–136Google Scholar
  135. 135.
    Lin Y, Beale S B. Performance predictions in solid oxide fuel cells. Applied Mathematical Modelling, 2006, 30(11): 1485–1496CrossRefGoogle Scholar
  136. 136.
    Endless Sphere Electric Vehicle and Technology Forum. EV business world. 2016–8–1, https://endless-sphere.com/forums/viewtopic.php?f = 15&t = 57655&start = 100Google Scholar
  137. 137.
    Osaka Gas CO., LTD. Principle of SOFC power generation. 2017–2–10, http://www.osakagas.co.jp/en/rd/fuelcell/sofc/sofc/index. htmlGoogle Scholar
  138. 138.
    Hydrogen Fuel Cell Engines and Related Technologies Course. 2015–9–10, http://whitesmoke.wikifoundry.com/page/7.+ Addendum,+ H.A.R.T.+(Hydrogen + fuelled)+ engineGoogle Scholar
  139. 139.
    Dawoud B, Amer E, Gross D. Experimental investigation of an adsorptive thermal energy storage. International Journal of Energy Research, 2010, 31(2): 135–147CrossRefGoogle Scholar
  140. 140.
    Vibhu V, Rougier A, Nicollet C, Flura A, Fourcade S, Penin N, Grenier J C, Bassat J M. Pr4Ni3O10 + δ: a new promising oxygen electrode material for solid oxide fuel cells. Journal of Power Sources, 2016, 317: 184–193CrossRefGoogle Scholar
  141. 141.
    Shimada H, Yamaguchi T, Suzuki T, Sumi H, Hamamoto K, Fujishiro Y. High power density cell using nanostructured Srdoped SmCoO3 and Sm-doped CeO2 composite powder synthesized by spray pyrolysis. Journal of Power Sources, 2016, 302: 308–314CrossRefGoogle Scholar
  142. 142.
    Myung J H, Neagu D, Miller D N, Irvine J T. Switching on electrocatalytic activity in solid oxide cells. Nature, 2016, 537 (7621): 528–531CrossRefGoogle Scholar
  143. 143.
    Sengodan S, Choi S, Jun A, Shin T H, Ju Y W, Jeong H Y, Shin J, John T S I, Kim G. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nature Materials, 2015, 14(2): 205–209CrossRefGoogle Scholar
  144. 144.
    Wu L, Wang S, Wang S, Xia C. Enhancing the performance of doped ceria interlayer for tubular solidoxide fuel cells. Journal of Power Sources, 2013, 240(240): 241–244CrossRefGoogle Scholar
  145. 145.
    Park Y M, Kim H. Composite cathodes based on Sm0.5Sr0.5CoO3Ld with porous Gd-doped ceria barrier layers for solid oxide fuel cells. International Journal of Hydrogen Energy, 2012, 37(20):15320–15333CrossRefGoogle Scholar
  146. 146.
    Wang F, Chen D, Shao Z. Sm0.5Sr0.5CoO3–δ infiltrated cathodes for solid oxide fuel cells with improved oxygen reduction activity and stability. Journal of Power Sources, 2012, 216: 208–215CrossRefGoogle Scholar
  147. 147.
    Qian J, Zhu Z, Dang J, Jiang G, Liu W. Improved performance of solid oxide fuel cell with pulsed laser deposited thin film ceria–zirconia bilayer electrolytes on modified anode substrate. Electrochimica Acta, 2013, 92(92): 243–247CrossRefGoogle Scholar
  148. 148.
    Li C, Chen H, Shi H, Tade M O, Shao Z. Green fabrication of composite cathode with attractive performance for solid oxide fuel cells through facile inkjet printing. Journal of Power Sources, 2015, 273(273): 465–471CrossRefGoogle Scholar
  149. 149.
    Gao Z, Miller E C, Barnett S A. A high power density intermediate-temperature solid oxide fuel cell with thin (La0.9Sr0.1)0.98 (Ga0.8Mg0.2)O3–δ electrolyte and nano-scale. Advanced Functional Materials, 2015, 24(36): 5703–5709CrossRefGoogle Scholar
  150. 150.
    Zhang H, Zhao F, Chen F, Xia C. Nano-structured Sm0.5Sr0.5CoO3–δ electrodes for intermediate-temperature SOFCs with zirconia electrolytes. Solid State Ionics, 2011, 192(1): 591–594CrossRefGoogle Scholar
  151. 151.
    Liu M, Dong D, Zhao F, Gao J, Ding D, Liu X, Meng G. Highperformance cathode-supported SOFCs prepared by a single-step co-firing process. Journal of Power Sources, 2008, 182(2): 585–588CrossRefGoogle Scholar
  152. 152.
    Chang J C, Lee M C, Yang R J, Chang Y C, Lin T N, Wang C H, Kao W X, Lee L S. Fabrication and characterization of Sm0.2Ce0.8O2–δ, Sm0.5Sr0.5CoO3–δ composite cathode for anode supported solid oxide fuel cell. Journal of Power Sources, 2011, 196(6): 3129–3133CrossRefGoogle Scholar
  153. 153.
    Sarmah P, Gogoi T K, Das R. Estimation of operating parameters of a SOFC integrated combined power cycle using differential evolution based inverse method. Applied Thermal Engineering, 2017, 119: 98–107CrossRefGoogle Scholar
  154. 154.
    Gogoi T K, Pandey M, Das R. Estimation of operating parameters of a reheat regenerative power cycle using simplex search and differential evolution based inverse methods. Energy Conversion and Management, 2015, 91: 204–218CrossRefGoogle Scholar
  155. 155.
    Gogoi T K, Das R. A combined cycle plant with air and fuel recuperator for captive power application. Part 2: Inverse analysis and parameter estimation. Energy Conversion and Management, 2014, 79(79): 778–789Google Scholar
  156. 156.
    Gogoi T K, Das R. Inverse analysis of an internal reforming solid oxide fuel cell system using simplex search method. Applied Mathematical Modelling, 2013, 37(10–11): 6994–7015MathSciNetCrossRefGoogle Scholar
  157. 157.
    Cable T L, Sofie S W. A symmetrical, planar SOFC design for NASA’s high specific power density requirements. Journal of Power Sources, 2007, 174(1): 221–227CrossRefGoogle Scholar
  158. 158.
    Park J S, An J, Lee M H, Prinz F B, Lee W. Effects of surface chemistry and microstructure of electrolyte on oxygen reduction kinetics of solid oxide fuel cells. Journal of Power Sources, 2015, 295: 74–78CrossRefGoogle Scholar
  159. 159.
    Tsipis E V, Naumovich E N, Patrakeev M V, Yaremchenko A A, Marozau I P, Kovalevsky A V, Waerenborgh J C, Kharton V V. Oxygen deficiency, vacancy clustering and ionic transport in (La, Sr)CoO3–d. Solid State Ionics, 2011, 192(1): 42–48CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Abdalla M. Abdalla
    • 1
    • 2
  • Shahzad Hossain
    • 3
  • Pg MohdIskandr Petra
    • 1
  • Mostafa Ghasemi
    • 4
  • Abul K. Azad
    • 1
  1. 1.Faculty of Integrated TechnologiesUniversiti Brunei Darussalam, JalanTungku LinkGadongBrunei Darussalam
  2. 2.Mechanical Engineering Department, Faculty of EngineeringSuez Canal UniversityIsmailiaEgypt
  3. 3.Institute of Nuclear Science and TechnologyBangladesh Atomic Energy CommissionDhakaBangladesh
  4. 4.Petroleum Engineering DepartmentUniversiti Teknologi PETRONAS, Seri IskandarTronoh, PerakMalaysia

Personalised recommendations