Frontiers in Energy

, Volume 12, Issue 2, pp 305–313 | Cite as

Magnetic confinement fusion: a brief review

  • Chuanjun HuangEmail author
  • Laifeng Li
Review Article


Fusion energy is considered to be the ultimate energy source, which does not contribute to climate change compared with conventional fossil fuel. It is massive compared with unconventional renewable energy and demonstrates fewer safety features compared with unconventional fission energy. During the past several decades, never-ceasing efforts have been made to peacefully utilize the fusion energy in various approaches, especially inertial confinement and magnetic confinement. In this paper, the main developments of magnetic confinement fusion with emphasis on confinement systems as well as challenges of materials related to superconducting magnet and plasmafacing components are reviewed. The scientific feasibility of magnetic confinement fusion has been demonstrated in JET, TFTR, JT-60, and EAST, which instigates the construction of the International Thermonuclear Experimental Reactor (ITER). A fusion roadmap to DEMO and commercial fusion power plant has been established and steady progresses have been made to achieve the ultimate energy source.


fusion energy magnetic confinement tokamak structural material superconducting magnet 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the State Key Laboratory of Technologies in Space Cryogenic Propellants (Grant No. SKLTSCPQN201501), the National Magnetic Confinement Fusion Science Program (Grant No. 2015GB121001), and the National Natural Science Foundation of China (Grant Nos. 51427806, 51401224, and 51577185).


  1. 1.
    Piera M. Sustainability issues in the development of Nuclear Fission energy. Energy Conversion and Management, 2010, 51(5): 938–946CrossRefGoogle Scholar
  2. 2.
    Horvath A, Rachlew E. Nuclear power in the 21st century: challenges and possibilities. Ambio, 2016, 45(Suppl 1): 38–49CrossRefGoogle Scholar
  3. 3.
    Rogner H H. World energy demand and supply. IAEA, Vienna, Austria, 2012Google Scholar
  4. 4.
    Betti R, Hurricane O A. Inertial-confinement fusion with lasers. Nature Physics, 2016, 12(5): 435–448CrossRefGoogle Scholar
  5. 5.
    Craxton R S, Anderson K S, Boehly T R, Goncharov V N, Harding D R, Knauer J P, McCrory R L, McKenty P W, Meyerhofer D D, Myatt J F, Schmitt A J, Sethian J D, Short R W, Skupsky S, Theobald W, Kruer WL, Tanaka K, Betti R, Collins T J B, Delettrez J A, Hu S X, Marozas J A, Maximov A V, Michel D T, Radha P B, Regan S P, Sangster T C, Seka W, Solodov A A, Soures J M, Stoeckl C, Zuegel J D. Direct-drive inertial confinement fusion: a review. Physics of Plasmas, 2015, 22(11): 139–477CrossRefGoogle Scholar
  6. 6.
    Stacey W M. An Introduction to the Physics and Technology of Magnetic Confinement Fusion. Fusion, Germany: Wiley-VCH, 2010CrossRefGoogle Scholar
  7. 7.
    Burdakov A V, Ivanov A A, Kruglyakov E P. Modern magnetic mirrors and their fusion prospects. Plasma Physics and Controlled Fusion, 2010, 52(12): 124026CrossRefGoogle Scholar
  8. 8.
    Fowler T K, Moir R W, Simonen T C. A new simpler way to obtain high fusion power gain in tandem mirrors. Nuclear Fusion, 2017, 57(5): 056014CrossRefGoogle Scholar
  9. 9.
    Clery D. Twisted logic. Science, 2015, 350(6259): 369–371CrossRefGoogle Scholar
  10. 10.
    Pedersen T S, Otte M, Lazerson S, Helander P, Bozhenkov S, Biedermann C, Klinger T, Wolf R C, Bosch H S, Wendelstein 7-X team. Confirmation of the topology of the Wendelstein 7-X magnetic field to better than 1:100000. Nature Communications, 2016, 7: 13493CrossRefGoogle Scholar
  11. 11.
    Bosch H S, Brakel R, Braeuer T, Bykov V, Eeten P, Feist J H, Fullenbach F, Gasparotto M, Grote H, Klinger T, Laqua H, Nagel M, Naujoks D, Otte M, Risse K, Rummel T, Schacht J, Spring A, Pedersen T S, Vilbrandt R, Wegener L, Werner A, Wolf R C, Baldzuhn J, Biedermann C, Braune H, Buihenn R, Hirsch M, Hofel U, Kanuer J, Kornejew P, Marsen S, Stange T, Mora H T, and W7-X team. Final integration, commissioning and start of the Wendelstein 7-X stellarator operation. Nuclear Fusion, 2017, 57(11): 116015CrossRefGoogle Scholar
  12. 12.
    Brotankova J, Cadwallader L C, Costley A E. Magnetic Fusion Technology Lecture Notes in Energy. New York: Springer, 2013Google Scholar
  13. 13.
    Ongena J, Koch R, Wolf R, Zohm H. Magnetic-confinement fusion. Nature Physics, 2016, 12(5): 398–410CrossRefGoogle Scholar
  14. 14.
    Butler D. ITER keeps eye on prize. Nature, 2013, 502(7471): 282–283CrossRefGoogle Scholar
  15. 15.
    Clery D. The new shape of fusion. Science, 2015, 348(6237): 854CrossRefGoogle Scholar
  16. 16.
    Chapman B E, Almagri A F, Anderson J K, Brower D L, Caspary K J, Clayton D J, Craig D, Hartog D J D, Ding WX, Ennis D A, Fiksel G, Gangadhara S, Kumar S, Magee R M, O’Connell R, Parke E, Prager S C, Reusch J A, Sarff J S, Stephens H D, Yang Y M. Generation and confinement of hot ions and electrons in a reversedfield pinch plasma. Plasma Physics and Controlled Fusion, 2010, 52(12): 124048CrossRefGoogle Scholar
  17. 17.
    Yamada H, Kasada R, Ozaki A, Sakamoto R, Sakamoto Y, Takenaga H, Tanaka T, Tanigawa H, Okano K, Tobita K, Kaneko O, Ushigusa K. Japanese endeavors to establish technological bases for DEMO. Fusion Engineering and Design, 2016, 109–111, part B: 1318–1325CrossRefGoogle Scholar
  18. 18.
    Brown T, Titus P, Brooks A, Zhang H, Neilson H, Im K, Kim K. Results of availability imposed configuration details developed for K-DEMO. Fusion Engineering and Design, 2016, 109–111, part B: 1091–1095Google Scholar
  19. 19.
    Federici G, Kemp R, Ward D, Bachmann C, Franke T, Gonzalez S, Lowry C, Gadomska M, Harman J, Meszaros B, Morlock C, Romanelli F, Wenninger R. Overview of EU DEMO design and R&D activities. Fusion Engineering and Design, 2014, 89(7–8): 882–889CrossRefGoogle Scholar
  20. 20.
    Zheng J, Liu X, Song Y, Wan Y, Li J, Wu S, Wan B, Ye M, Wei J, Xu W, Liu S, Weng P, Lu K, Luo Z. Concept design of CFETR superconducting magnet system based on different maintenance ports. Fusion Engineering and Design, 2013, 88(11): 2960–2966CrossRefGoogle Scholar
  21. 21.
    Buckingham R, Loving A. Remote-handling challenges in fusion research and beyond. Nature Physics, 2016, 12(5): 391–393CrossRefGoogle Scholar
  22. 22.
    Bruzzone P. Superconductivity and fusion energy-the inseparable companions. Superconductor Science and Technology, 2015, 28(2): 708–718CrossRefGoogle Scholar
  23. 23.
    Pan X F, Feng Y, Yan G, Cui L J, Chen C, Zhang Y, Wu Z X, Liu X H, Zhang P X, Bai Z M, Zhao Y, Li L F. Manufacture, electromagnetic properties and microstructure of an 18-filament jelly-roll Nb3Al superconducting wire with rapid heating and quenching heat-treatment. Superconductor Science and Technology, 2016, 29(1): 015008CrossRefGoogle Scholar
  24. 24.
    Fietz WH, Barth C, Drotziger S, Goldacker W, Heller R, Schlachter S I, Weiss K P. Prospects of high temperature superconductors for fusion magnets and power applications. Fusion Engineering and Design, 2013, 88(6–8): 440–445CrossRefGoogle Scholar
  25. 25.
    Uglietti D, Bykovsky N, Wesche R, Bruzzone P. Development of HTS conductors for fusion magnets. IEEE Transactions on Applied Superconductivity, 2015, 25(3): 1–6CrossRefGoogle Scholar
  26. 26.
    Qin J G, Wu Y, Li J G, Dai C, Liu F. Manufacture and test of Bi- 2212 cable-in-conduit conductor. IEEE Transactions on Applied Superconductivity, 2017, 27(4): 1–5CrossRefGoogle Scholar
  27. 27.
    Zhou T, Lu K, Ran Q, Ding K, Feng H, Wu H, Liu C, Song Y, Niu E, Bauer P, Devred A. Mock-up qualification and prototype manufacture for ITER current leads. Fusion Engineering and Design, 2015, 96–97: 388–391CrossRefGoogle Scholar
  28. 28.
    Nishimura A. Need for development of higher strength cryogenic structural materials for fusion magnet. Advances in Cryogenic Engineering, 2014, 60: 333–339Google Scholar
  29. 29.
    Shen T, Li P, Jiang J, Cooley L, Tompkins J, McRae D, Walsh R. High strength kiloampere Bi2Sr2CaCu2Ox cables for high-field magnet applications. Superconductor Science and Technology, 2015, 28(6): 065002CrossRefGoogle Scholar
  30. 30.
    Zinkle S J, Möslang A. Evaluation of irradiation facility options for fusion materials research and development. Fusion Engineering and Design, 2013, 88(6–8): 472–482CrossRefGoogle Scholar
  31. 31.
    Zinkle S J, Busby J T. Structural materials for fission & fusion energy. Materials Today, 2009, 12(11): 12–19CrossRefGoogle Scholar
  32. 32.
    Zinkle S J, Snead L L. Designing radiation resistance in materials for fusion energy. Annual Review of Materials Research, 2014, 44(1): 241–267CrossRefGoogle Scholar
  33. 33.
    Snead L L, Nozawa T, Ferraris M, Katoh Y, Shinavski R, Sawan M. Silicon carbide composites as fusion power reactor structural materials. Journal of Nuclear Materials, 2011, 417(1–3): 330–339CrossRefGoogle Scholar
  34. 34.
    Huang Q. Status and improvement of CLAM for nuclear application. Nuclear Fusion, 2017, 57: 086042CrossRefGoogle Scholar
  35. 35.
    Kurtz R J, Alamo A, Lucon E, Huang Q, Jitsukawa S, Kimura A, Klueh R L, Odette G R, Petersen C, Sokolov M A, Spätig P, Rensman J W. Recent progress toward development of reduced activation ferritic/martensitic steels for fusion structural applications. Journal of Nuclear Materials, 2009, 386(5): 411–417CrossRefGoogle Scholar
  36. 36.
    Kondo T. IFMIF, its facility concept and technology. Journal of Nuclear Materials, 1998, 258(4): 47–55CrossRefGoogle Scholar
  37. 37.
    Knaster J, Chel S, Fischer U, Groeschel F, Heidinger R, Ibarra A, Micciche G, Möslang A, Sugimoto M, Wakai E. IFMIF, a fusion relevant neutron source for material irradiation current status. Journal of Nuclear Materials, 2014, 453(1–3): 115–119CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations