Frontiers in Energy

, Volume 12, Issue 1, pp 72–86 | Cite as

Thermal transport in organic/inorganic composites

  • Bin Liu
  • Lan Dong
  • Qing Xi
  • Xiangfan Xu
  • Jun Zhou
  • Baowen Li
Review Article


Composite materials, which consist of organic and inorganic components, are widely used in various fields because of their excellent mechanical properties, resistance to corrosion, low-cost fabrication, etc. Thermal properties of organic/inorganic composites play a crucial role in some applications such as thermal interface materials for micro-electronic packaging, nano-porous materials for sensor development, thermal insulators for aerospace, and high-performance thermoelectric materials for power generation and refrigeration. In the past few years, many studies have been conducted to reveal the physical mechanism of thermal transport in organic/ inorganic composite materials in order to stimulate their practical applications. In this paper, the theoretical and experimental progresses in this field are reviewed. Besides, main factors affecting the thermal conductivity of organic/ inorganic composites are discussed, including the intrinsic properties of organic matrix and inorganic fillers, topological structure of composites, loading volume fraction, and the interfacial thermal resistance between fillers and organic matrix.


thermal conductivity organic/inorganic composites effective medium theory thermal percolation theory interfacial thermal resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work is supported by the National Key Research & Development Program of China (Grant No. 2017YFB0406000), the program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (Grant No. TP2014012), and the Shanghai Committee of Science and Technology (Grant No. 17ZR1447900).

Supplementary material

11708_2018_526_MOESM1_ESM.pdf (184 kb)
Electronic Supplementary Material


  1. 1.
    Song S H, Park K H, Kim B H, Choi Y W, Jun G H, Lee D J, Kong B S, Paik K W, Jeon S. Enhanced thermal conductivity of epoxygraphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Advanced Materials, 2013, 25(5): 732–737CrossRefGoogle Scholar
  2. 2.
    Prasher R S, Chang J Y, Sauciuc I, Narasimhan S, Chau D, Chrysler G, Myers A, Prstic S, Hu C. Nano and micro technologybased next-generation package-level cooling solutions. Intel Technology Journal, 2005, 09(04): 285–296CrossRefGoogle Scholar
  3. 3.
    Felba J. Thermally conductive nanocomposites. In: Felba J. Nano-bio-electronic, Photonic and MEMS Packaging. New York: Springer, Science, 2010Google Scholar
  4. 4.
    Renteria J, Legedza S, Salgado R, Balandin M P, Ramirez S, Saadah M, Kargar F, Balandin A A. Magnetically-functionalized self-aligning graphene fillers for high-efficiency thermal management applications. Materials & Design, 2015, 88: 214–221CrossRefGoogle Scholar
  5. 5.
    Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321(5895): 1457–1461CrossRefGoogle Scholar
  6. 6.
    Zhang B, Sun J, Katz H E, Fang F, Opila R L. Promising thermoelectric properties of commercial PEDOT: PSS materials and their bi2Te3 powder composites. ACS Applied Materials & Interfaces, 2010, 2(11): 3170–3178CrossRefGoogle Scholar
  7. 7.
    See K C, Feser J P, Chen C E, Majumdar A, Urban J J, Segalman R A. Water-processable polymer-nanocrystal hybrids for thermoelectrics. Nano Letters, 2010, 10(11): 4664–4667CrossRefGoogle Scholar
  8. 8.
    Wang Y, Zhang S M, Deng Y. Flexible low-grade energy utilization devices based on high-performance thermoelectric polyaniline/tellurium nanorod hybrid films. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2016, 4(9): 3554–3559CrossRefGoogle Scholar
  9. 9.
    Hong C T, Lee W, Kang Y H, Yoo Y, Ryu J, Cho S Y, Jang K S. Effective doping by spin-coating and enhanced thermoelectric power factors in SWCNT/P3HT hybrid films. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(23): 12314–12319CrossRefGoogle Scholar
  10. 10.
    Zhou C, Dun C, Wang Q, Wang K, Shi Z, Carroll D L, Liu G, Qiao G. Nanowires as building blocks to fabricate flexible thermoelectric fabric: the case of copper telluride nanowires. ACS Applied Materials & Interfaces, 2015, 7(38): 21015–21020CrossRefGoogle Scholar
  11. 11.
    Wan C, Gu X, Dang F, Itoh T, Wang Y, Sasaki H, Kondo M, Koga K, Yabuki K, Snyder G J, Yang R, Koumoto K. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nature Materials, 2015, 14 (6): 622–627CrossRefGoogle Scholar
  12. 12.
    Wang H, Hsu J H, Yi S I, Kim S L, Choi K, Yang G, Yu C. Thermally driven large n-type voltage responses from hybrids of carbon nanotubes and poly(3,4-ethylenedioxythiophene) with tetrakis(dimethylamino)ethylene. Advanced Materials, 2015, 27 (43): 6855–6861CrossRefGoogle Scholar
  13. 13.
    Sun Y, Qiu L, Tang L, Geng H, Wang H, Zhang F, Huang D, Xu W, Yue P, Guan Y S, Jiao F, Sun Y, Tang D, Di C A, Yi Y, Zhu D. Flexible n-type high-performance thermoelectric thin films of poly (nickel-ethylenetetrathiolate) prepared by an electrochemical method. Advanced Materials, 2016, 28(17): 3351–3358CrossRefGoogle Scholar
  14. 14.
    Liu Y, Song Z, Zhang Q, Zhou Z, Tang Y, Wang L, Zhu J, Luo W, Jiang W. Preparation of bulk AgNWs/PEDOT: PSS composites: a new model towards high-performance bulk organic thermoelectric materials. RSC Advances, 2015, 5(56): 45106–45112CrossRefGoogle Scholar
  15. 15.
    Chen Y, He M, Liu B, Bazan G C, Zhou J, Liang Z. Bendable ntype metallic nanocomposites with large thermoelectric power factor. Advanced Materials, 2017, 29(4): 1604752CrossRefGoogle Scholar
  16. 16.
    Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D, Ren Z, Fleurial J, Gogna P. New directions for low-dimensional thermoelectric materials. Advanced Materials, 2007, 19(8): 1043–1053CrossRefGoogle Scholar
  17. 17.
    Zhou J, Li X, Chen G, Yang R G. Semiclassical model for thermoelectric transport in nanocomposites. Physical Review B: Condensed Matter and Materials Physics, 2010, 82(11): 115308CrossRefGoogle Scholar
  18. 18.
    Goyala V, Balandinb A A. Thermal properties of the hybrid graphene-metal nano-micro-composites: applications in thermal interface materials. Applied Physics Letters, 2012, 100(7): 073113CrossRefGoogle Scholar
  19. 19.
    Gojny F H, Wichmann M H G, Fiedler B, Kinloch I A, Bauhofer W, Windle A H, Schulte K. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer, 2006, 47(6): 2036–2045CrossRefGoogle Scholar
  20. 20.
    Haggenmueller R, Guthy C, Lukes J R, Fischer J E, Winey K I. Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity. Macromolecules, 2007, 40(7): 2417–2421CrossRefGoogle Scholar
  21. 21.
    Min C, Yu D, Cao J, Wang G, Feng L. A graphite nanoplatelet/epoxy composite with high dielectric constant and high thermal conductivity. Carbon, 2013, 55: 116–125CrossRefGoogle Scholar
  22. 22.
    Hung M T, Choi O, Ju Y S, Hahn H T. Heat conduction in graphite-nanoplatelet-reinforced polymer nanocomposites. Applied Physics Letters, 2006, 89(2): 023117CrossRefGoogle Scholar
  23. 23.
    Zhou W, Wang C, Ai T, Wu K, Zhao F, Gu H. A novel fiberreinforced polyethylene composite with added silicon nitride particles for enhanced thermal conductivity. Composites. Part A, Applied Science and Manufacturing, 2009, 40(6–7): 830–836CrossRefGoogle Scholar
  24. 24.
    He H, Fu R, Shen Y, Han Y, Song X. Preparation and properties of Si3N4/PS composites used for electronic packaging. Composites Science and Technology, 2007, 67(11–12): 2493–2499CrossRefGoogle Scholar
  25. 25.
    Jo I, Pettes M T, Kim J, Watanabe K, Taniguchi T, Yao Z, Shi L. Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano Letters, 2013, 13(2): 550–554CrossRefGoogle Scholar
  26. 26.
    Zeng J L, Cao Z, Yang D W, Sun L X, Zhang L. Thermal conductivity enhancement of Ag nanowires on an organic phase change material. Journal of Thermal Analysis and Calorimetry, 2010, 101(1): 385–389CrossRefGoogle Scholar
  27. 27.
    Wang W, Yang X, Fang Y, Ding J, Yan J. Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using β-Aluminum nitride. Applied Energy, 2009, 86(7–8): 1196–1200CrossRefGoogle Scholar
  28. 28.
    Li Y, Huang X, Hu Z, Jiang P, Li S, Tanaka T. Large dielectric constant and high thermal conductivity in poly(vinylidene fluoride)/barium titanate/silicon carbide three-phase nanocomposites. ACS Applied Materials & Interfaces, 2011, 3(11): 4396–4403CrossRefGoogle Scholar
  29. 29.
    Manchado M A L, Valentini L, Biagiotti J, Kenny J M. Thermal and mechanical properties of single-walled carbon nanotubespolypropylene composites prepared by melt processing. Carbon, 2005, 43(7): 1499–1505CrossRefGoogle Scholar
  30. 30.
    Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Progress in Polymer Science, 2011, 36(7): 914–944CrossRefGoogle Scholar
  31. 31.
    Shahil K M F, Balandin A A. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Letters, 2012, 12(2): 861–867CrossRefGoogle Scholar
  32. 32.
    Shenogina N, Shenogin S, Xue L, Keblinski P. On the lack of thermal percolation in carbon nanotube composites. Applied Physics Letters, 2005, 87(13): 133106CrossRefGoogle Scholar
  33. 33.
    Shi J, Ger M, Liu Y, Fan Y, Wen N, Lin C, Pu N. Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives. Carbon, 2013, 51: 365–372CrossRefGoogle Scholar
  34. 34.
    Yu A, Ramesh P, Sun X, Bekyarova E, Itkis M E, Haddon R C. Enhanced thermal conductivity in a hybrid graphite nanoplatelet–carbon nanotube filler for epoxy composites. Advanced Materials, 2008, 20(24): 4740–4744CrossRefGoogle Scholar
  35. 35.
    Huxtable S T, Cahill D G, Shenogin S, Xue L, Ozisik R, Barone P, Usrey M, Strano M S, Siddons G, Shim M, Keblinski P. Interfacial heat flow in carbon nanotube suspensions. Nature Materials, 2003, 2(11): 731–734CrossRefGoogle Scholar
  36. 36.
    Foygel M, Morris R D, Anez D, French S, Sobolev V L. Theoretical and computational studies of carbon nanotube composites and suspensions: electrical and thermal conductivity. Physical Review B: Condensed Matter and Materials Physics, 2005, 71(10): 104201CrossRefGoogle Scholar
  37. 37.
    Coleman J N, Curran S, Dalton A B, Davey A P, McCarthy B, Blau W, Barklie R C. Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite. Physical Review B: Condensed Matter and Materials Physics, 1998, 58(12): R7492–R7495CrossRefGoogle Scholar
  38. 38.
    Wang L, Dang Z. Carbon nanotube composites with high dielectric constant at low percolation threshold. Applied Physics Letters, 2005, 87(4): 042903CrossRefGoogle Scholar
  39. 39.
    Kirkpatrick S. Percolation and conduction. Reviews of Modern Physics, 1973, 45(4): 574–588CrossRefGoogle Scholar
  40. 40.
    Nakayama T, Yakubo K, Orbach R L. Dynamical properties of fractal networks: scaling, numerical simulations, and physical realizations. Reviews of Modern Physics, 1994, 66(2): 381–443CrossRefGoogle Scholar
  41. 41.
    Balberg I, Anderson C H, Alexander S, Wagner N. Excluded volume and its relation to the onset of percolation. Physical Review B: Condensed Matter and Materials Physics, 1984, 30(7): 3933–3943CrossRefGoogle Scholar
  42. 42.
    Tian W, Yang R. Phonon transport and thermal conductivity percolation in random nanoparticle composites. Computer Modeling in Engineering & Sciences, 2008, 24: 123–141Google Scholar
  43. 43.
    Zheng R, Gao J, Wang J, Feng S P, Ohtani H, Wang J, Chen G. Thermal percolation in stable graphite suspensions. Nano Letters, 2012, 12(1): 188–192CrossRefGoogle Scholar
  44. 44.
    Kilbride B E, Coleman J N, Fraysse J, Fournet P, Cadek M, Drury A, Hutzler S, Roth S, Blau W J. Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. Journal of Applied Physics, 2002, 92(7): 4024–4030CrossRefGoogle Scholar
  45. 45.
    Last B J, Thouless D J. Percolation theory and electrical conductivity. Physical Review Letters, 1971, 27(25): 1719–1721CrossRefGoogle Scholar
  46. 46.
    Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Graphene-based composite materials. Nature, 2006, 442(7100): 282–286CrossRefGoogle Scholar
  47. 47.
    Veca M L, Meziani M J, Wang W, Wang X, Lu F, Zhang P, Lin Y, Fee R, Connell J W, Sun Y. Carbon nanosheets for polymeric nanocomposites with high thermal conductivity. Advanced Materials, 2009, 21(20): 2088–2092CrossRefGoogle Scholar
  48. 48.
    Jang W, Chen Z, Bao W, Lau C N, Dames C. Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite. Nano Letters, 2010, 10(10): 3909–3913CrossRefGoogle Scholar
  49. 49.
    Yu A, Ramesh P, Itkis M E, Bekyarova E, Haddon R C. Graphite nanoplatelet-epoxy composite thermal interface materials. Journal of Physical Chemistry C, 2007, 111(21): 7565–7569CrossRefGoogle Scholar
  50. 50.
    Tian X, Itkis M E, Bekyarova E B, Haddon R C. Anisotropic thermal and electrical properties of thin thermal interface layers of graphite nanoplatelet-based composites. Scientific Reports, 2013, 3(1): 1710CrossRefGoogle Scholar
  51. 51.
    Gu J, Xie C, Li H, Dang J, Geng W, Zhang Q. Thermal percolation behavior of graphene nanoplatelets/polyphenylene sulfide thermal conductivity composites. Polymer Composites, 2014, 35: 1087–1092CrossRefGoogle Scholar
  52. 52.
    Ding P, Zhang J, Song N, Tang S, Liu Y, Shi L. Anisotropic thermal conductive properties of hot-pressed polystyrene/graphene composites in the through-plane and in-plane directions. Composites Science and Technology, 2015, 109: 25–31CrossRefGoogle Scholar
  53. 53.
    Ding P, Su S, Song N, Tang S, Liu Y, Shi L. Highly thermal conductive composites with polyamide-6 covalently-grafted graphene by an in situ polymerization and thermal reduction process. Carbon, 2014, 66: 576–584CrossRefGoogle Scholar
  54. 54.
    Shtein M, Nadiv R, Buzaglo M, Kahil K, Regev O. Thermally conductive graphene-polymer composites: size, percolation, and synergy effects. Chemistry of Materials, 2015, 27(6): 2100–2106CrossRefGoogle Scholar
  55. 55.
    Shtein M, Nadiv R, Buzaglo M, Regev O. Graphene-based hybrid composites for efficient thermal management of electronic devices. ACS Applied Materials & Interfaces, 2015, 7(42): 23725–23730CrossRefGoogle Scholar
  56. 56.
    Guo W, Chen G. Fabrication of graphene/epoxy resin composites with much enhanced thermal conductivity via ball milling technique. Journal of Applied Polymer Science, 2014, 131(15): 40565CrossRefGoogle Scholar
  57. 57.
    Eksik O, Bartolucci S F, Gupta T, Fard H, Borca-Tasciuc T, Koratkar N. A novel approach to enhance the thermal conductivity of epoxy nanocomposites using graphene core-shell additives. Carbon, 2016, 101: 239–244CrossRefGoogle Scholar
  58. 58.
    Ma L, Wang J, Marconnet A M, Barbati A C, McKinley G H, Liu W, Chen G. Viscosity and thermal conductivity of stable graphite suspensions near percolation. Nano Letters, 2015, 15(1): 127–133CrossRefGoogle Scholar
  59. 59.
    Swartz E T, Pohl R O. Thermal boundary resistance. Reviews of Modern Physics, 1989, 61(3): 605–668CrossRefGoogle Scholar
  60. 60.
    Malekpour H, Chang K H, Chen J C, Lu C Y, Nika D L, Novoselov K S, Balandin A A. Thermal conductivity of graphene laminate. Nano Letters, 2014, 14(9): 5155–5161CrossRefGoogle Scholar
  61. 61.
    Kumar P, Shahzad F, Yu S, Hong S M, Kim Y, Koo C M. Largearea reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon, 2015, 94: 494–500CrossRefGoogle Scholar
  62. 62.
    Kumar P, Yu S, Shahzad F, Hong S M, Kim Y H, Koo C M. Ultrahigh electrically and thermally conductive self-aligned graphene/polymer composites using large-area reduced graphene oxides. Carbon, 2016, 101: 120–128CrossRefGoogle Scholar
  63. 63.
    Kim H S, Bae H S, Yu J, Kim S Y. Thermal conductivity of polymer composites with the geometrical characteristics of graphene nanoplatelets. Scientific Reports, 2016, 6(1): 26825CrossRefGoogle Scholar
  64. 64.
    Lin C, Chung D D L. Graphite nanoplatelet pastes vs. carbon black pastes as thermal interface materials. Carbon, 2009, 47(1): 295–305CrossRefGoogle Scholar
  65. 65.
    Chatterjee S, Nafezarefi F, Tai N H, Schlagenhauf L, Nüesch F A, Chu B T T. Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon, 2012, 50(15): 5380–5386CrossRefGoogle Scholar
  66. 66.
    Li Q, Guo Y, Li W, Qiu S, Zhu C, Wei X, Chen M, Liu C, Liao S, Gong Y, Mishra A K, Liu L. Ultrahigh thermal conductivity of assembled aligned multilayer graphene/epoxy composite. Chemistry of Materials, 2014, 26(15): 4459–4465CrossRefGoogle Scholar
  67. 67.
    De Volder M F, Tawfick S H, Baughman R H, Hart A J. Carbon nanotubes: present and future commercial applications. Science, 2013, 339(6119): 535–539CrossRefGoogle Scholar
  68. 68.
    Behabtu N, Young C C, Tsentalovich D E, Kleinerman O, Wang X, Ma A W K, Bengio E A, ter Waarbeek R F, de Jong J J, Hoogerwerf R E, Fairchild S B, Ferguson J B, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto M J, Pasquali M. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science, 2013, 339(6116): 182–186CrossRefGoogle Scholar
  69. 69.
    Marconnet A M, Yamamoto N, Panzer MA, Wardle B L, Goodson K E. Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density. ACS Nano, 2011, 5(6): 4818–4825CrossRefGoogle Scholar
  70. 70.
    Lizundia E, Oleaga A, Salazar A, Sarasua J R. Nano- and microstructural effects on thermal properties of poly(L-lactide)/multi-wall carbon nanotube composites. Polymer, 2012, 53(12): 2412–2421CrossRefGoogle Scholar
  71. 71.
    Cui W, Du F, Zhao J, Zhang W, Yang Y, Xie X, Mai Y. Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multi-walled carbon nanotubes. Carbon, 2011, 49(2): 495–500CrossRefGoogle Scholar
  72. 72.
    Rahmat M, Hubert P. Carbon nanotube–polymer interactions in nanocomposites: a review. Composites Science and Technology, 2011, 72(1): 72–84CrossRefGoogle Scholar
  73. 73.
    Yu W, Fu J, Chen L, Zong P, Yin J, Shang D, Lu Q, Chen H, Shi L. Enhanced thermal conductive property of epoxy composites by low mass fraction of organic-inorganic multilayer covalently grafted carbon nanotubes. Composites Science and Technology, 2016, 125: 90–99CrossRefGoogle Scholar
  74. 74.
    Zhao J, Du F, Cui W, Zhu P, Zhou X, Xie X. Effect of silica coating thickness on the thermal conductivity of polyurethane/SiO2 coated multi-walled carbon nanotube composites. Composites Part A, Applied Science and Manufacturing, 2014, 58: 1–6CrossRefGoogle Scholar
  75. 75.
    Gulotty R, Castellino M, Jagdale P, Tagliaferro A, Balandin A A. Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites. ACS Nano, 2013, 7(6): 5114–5121CrossRefGoogle Scholar
  76. 76.
    Bonnet P, Sireude D, Garnier B, Chauvet O. Thermal properties and percolation in carbon nanotube-polymer composites. Applied Physics Letters, 2007, 91(20): 201910CrossRefGoogle Scholar
  77. 77.
    Kapadia R S, Louie B M, Bandaru P R. The influence of carbon nanotube aspect ratio on thermal conductivity enhancement in nanotube-polymer composites. Journal of Heat Transfer, 2013, 136 (1): 011303CrossRefGoogle Scholar
  78. 78.
    Lu C, Mai Y W. Anomalous electrical conductivity and percolation in carbon nanotube composites. Journal of Materials Science, 2008, 43(17): 6012–6015CrossRefGoogle Scholar
  79. 79.
    Sato K, Ijuin A, Hotta Y. Thermal conductivity enhancement of alumina/polyamide composites via interfacial modification. Ceramics International, 2015, 41(8): 10314–10318CrossRefGoogle Scholar
  80. 80.
    Zhou W, Yu D. Thermal and dielectric properties of the aluminum particle/epoxy resin composites. Journal of Applied Polymer Science, 2010, 118(6): 3156–3166CrossRefGoogle Scholar
  81. 81.
    Balachander N, Seshadri I, Mehta R J, Schadler L S, Borca-Tasciuc T, Keblinski P, Ramanath G. Nanowire-filled polymer composites with ultrahigh thermal conductivity. Applied Physics Letters, 2013, 102(9): 093117CrossRefGoogle Scholar
  82. 82.
    Zeng J L, Cao Z, Yang D W, Sun L, Zhang L. Thermal conductivity enhancement of Ag nanowires on an organic phase change material. Journal of Thermal Analysis and Calorimetry, 2010, 101(1): 385–389CrossRefGoogle Scholar
  83. 83.
    Xu J, Munari A, Dalton E, Mathewson A, Razeeb K M. Silver nanowire array-polymer composite as thermal interface material. Journal of Applied Physics, 2009, 106(12): 124310CrossRefGoogle Scholar
  84. 84.
    Zhu D, Yu W, Du H, Chen L, Li Y, Xie H. Thermal conductivity of composite materials containing copper nanowires. Journal of Nanomaterials, 2016, 3089716Google Scholar
  85. 85.
    Wang S, Cheng Y, Wang R, Sun J, Gao L. Highly thermal conductive copper nanowire composites with ultralow loading: toward applications as thermal interface materials. ACS Applied Materials & Interfaces, 2014, 6(9): 6481–6486CrossRefGoogle Scholar
  86. 86.
    Nikkeshi S, Kudo M, Masuko T. Dynamic viscoelastic properties and thermal properties of Ni powder–epoxy resin composites. Journal of Applied Polymer Science, 1998, 69(13): 2593–2598CrossRefGoogle Scholar
  87. 87.
    Szostak M, Andezejewski J. Thermal properties of polymer-metal composites. Proceedings of the ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis, American Society of Mechanical Engineers, 2014Google Scholar
  88. 88.
    Sim L C, Ramanan S R, Ismail H, Seetharamu K N, Goh T J. Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochimica Acta, 2005, 430(1–2): 155–165CrossRefGoogle Scholar
  89. 89.
    Choi S, Kim J. Thermal conductivity of epoxy composites with a binary-particle system of aluminum oxide and aluminum nitride fillers. Composites Part B, Engineering, 2013, 51: 140–147CrossRefGoogle Scholar
  90. 90.
    Gu J, Liang C, Dang J, Dong W, Zhang Q. Ideal dielectric thermally conductive bismaleimide nanocomposites filled with polyhedral oligomeric silsesquioxane functionalized nanosized boron nitride. RSC Advances, 2016, 6(42): 35809–35814CrossRefGoogle Scholar
  91. 91.
    Kim K, Kim M, Hwang Y, Kim J. Chemically modified boron nitride-epoxy terminated dimethylsiloxane composite for improving the thermal conductivity. Ceramics International, 2014, 40(1): 2047–2056CrossRefGoogle Scholar
  92. 92.
    Yu W, Wang M, Xie H, Hu Y, Chen L. Silicon carbide nanowires suspensions with high thermal transport properties. Applied Thermal Engineering, 2016, 94: 350–354CrossRefGoogle Scholar
  93. 93.
    Ishida H, Rimdusit S. Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine. Thermochimica Acta, 1998, 320(1–2): 177–186CrossRefGoogle Scholar
  94. 94.
    Bujard P. Thermal conductivity of boron nitride filled epoxy resins: temperature dependence and influence of sample preparation. Conference on Thermal Phenomena in the Fabrication & Operation of Electronic Components: I-therm, 1988, 41–49CrossRefGoogle Scholar
  95. 95.
    Yung K C, Liem H. Enhanced thermal conductivity of boron nitride epoxy-matrix composite through multi-modal particle size mixing. Journal of Applied Polymer Science, 2007, 106(6): 3587–3591CrossRefGoogle Scholar
  96. 96.
    Li T L, Hsu S L. Enhanced thermal conductivity of polyimide films via a hybrid of micro- and nano-sized boron nitride. Journal of Physical Chemistry B, 2010, 114(20): 6825–6829CrossRefGoogle Scholar
  97. 97.
    Huang X, Zhi C, Jiang P, Golberg D, Bando Y, Tanaka T. Polyhedral oligosilsesquioxane-modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity. Advanced Functional Materials, 2013, 23 (14): 1824–1831CrossRefGoogle Scholar
  98. 98.
    Lin Z, Liu Y, Raghavan S, Moon K S, Sitaraman S K, Wong C P. Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: toward high performance anisotropic polymer composites for electronic encapsulation. ACS Applied Materials & Interfaces, 2013, 5(15): 7633–7640CrossRefGoogle Scholar
  99. 99.
    Takahashi F, Ito K, Morikawa J, Hashimoto T, Hatta I. Characterization of heat conduction in a polymer film. Japanese Journal of Applied Physics, 2004, 43(10): 7200–7204CrossRefGoogle Scholar
  100. 100.
    Yuan C, Duan B, Li L, Xie B, Huang M, Luo X. Thermal conductivity of polymer-based composites with magnetic aligned hexagonal boron nitride platelets. ACS Applied Materials & Interfaces, 2015, 7(23): 13000–13006CrossRefGoogle Scholar
  101. 101.
    Goyal V, Balandin A A. Thermal properties of the hybrid graphene-metal nano-micro-composites: applications in thermal interface materials. Applied Physics Letters, 2012, 100(7): 073113CrossRefGoogle Scholar
  102. 102.
    Zhou T, Wang X, Liu X, Xiong D. Improved thermal conductivity of epoxy composites using a hybrid multi-walled carbon nanotube/micro-SiC filler. Carbon, 2010, 48(4): 1171–1176CrossRefGoogle Scholar
  103. 103.
    Lee G W, Park M, Kim J, Lee J I, Yoon H G. Enhanced thermal conductivity of polymer composites filled with hybrid filler. Composites Part A, Applied Science and Manufacturing, 2006, 37 (5): 727–734Google Scholar
  104. 104.
    Fang L, Wu C, Qian R, Xie L, Yang K, Jiang P. Nano–micro structure of functionalized boron nitride and aluminum oxide for epoxy composites with enhanced thermal conductivity and breakdown strength. RSC Advances, 2014, 4(40): 21010–21017CrossRefGoogle Scholar
  105. 105.
    Wang F, Zeng X, Yao Y, Sun R, Xu J, Wong C P. Silver nanoparticle-deposited boron nitride nanosheets as fillers for polymeric composites with high thermal conductivity. Scientific Reports, 2016, 6(1): 19394CrossRefGoogle Scholar
  106. 106.
    Garnett J C M. Colours in metal glasses and in metallic films. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1904, 203(359–-371): 385–420Google Scholar
  107. 107.
    Bruggeman D A G. Calculation of different physical constants of heterogeneous substances, I. dielectric constants and conductances of mixers of isotropic substances. Annalen der Physik. Leipzig, 1935, 24: 636–679 (in German)CrossRefGoogle Scholar
  108. 108.
    Hamilton R L, Crosser O K. Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering Chemistry Fundamentals, 1962, 1(3): 187–191CrossRefGoogle Scholar
  109. 109.
    Jeffrey D J. Conduction through a random suspension of spheres. Proceedings of the Royal Society of London A Mathematical, Physical and Engineering Sciences, 1973, 335: 355–367CrossRefGoogle Scholar
  110. 110.
    Bonnecaze R T, Brady J F. The effective conductivity of random suspensions of spherical particles. Proceedings of the Royal Society of London A Mathematical, Physical and Engineering Sciences, 1991, 432: 445–465CrossRefGoogle Scholar
  111. 111.
    Bonnecaze R T, Brady J F. A method for determining the effective conductivity of dispersions of particles. Proceedings of the Royal Society of London A Mathematical, Physical and Engineering Sciences, 1990, 430: 285–313MATHCrossRefGoogle Scholar
  112. 112.
    Yu W, Choi S U S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. Journal of Nanoparticle Research, 2003, 5(1/2): 167–171CrossRefGoogle Scholar
  113. 113.
    Keblinski P, Eastman J A, Cahill D G. Nanofluids for thermal transport. Materials Today, 2005, 8(6): 36–44CrossRefGoogle Scholar
  114. 114.
    Patel H E, Das S K, Sundararajan T, Nair A S, George B, Pradeep T. Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects. Applied Physics Letters, 2003, 83(14): 2931–2933CrossRefGoogle Scholar
  115. 115.
    Choi S U S, Zhang Z G, Yu W, Lockwood F E, Grulke E A. Anomalous thermal conductivity enhancement in nanotube suspensions. Applied Physics Letters, 2001, 79(14): 2252–2254CrossRefGoogle Scholar
  116. 116.
    Eastman J A, Choi S U S, Li S, Yu W, Thompson L J. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 2001, 78(6): 718–720CrossRefGoogle Scholar
  117. 117.
    Keblinski P, Phillpot S R, Choi S U S, Eastman J A. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). International Journal of Heat and Mass Transfer, 2002, 45(4): 855–863MATHCrossRefGoogle Scholar
  118. 118.
    Kumar D H, Patel H E, Kumar V R R, Sundararajan T, Pradeep T, Das S K. Model for heat conduction in nanofluids. Physical Review Letters, 2004, 93(14): 144301CrossRefGoogle Scholar
  119. 119.
    Xuan Y, Li Q, Hu W. Aggregation structure and thermal conductivity of nanofluids. AIChE Journal, 2003, 49(4): 1038–1043CrossRefGoogle Scholar
  120. 120.
    Kapitza P L. Heat transfer and superfluidity of helium II. Physical Review, 1941, 20: 354–355CrossRefGoogle Scholar
  121. 121.
    Hu L, Desai T, Keblinski P. Determination of interfacial thermal resistance at the nanoscale. Physical Review B: Condensed Matter and Materials Physics, 2011, 83(19): 195423CrossRefGoogle Scholar
  122. 122.
    Hasselman D P H, Johnson L F. Effective thermal conductivity of composites with interfacial thermal barrier resistance. Journal of Composite Materials, 1987, 21(6): 508–515CrossRefGoogle Scholar
  123. 123.
    Benveniste Y. Effective thermal conductivity of composites with a thermal contact resistance between the constituents: nondilute case. Journal of Applied Physics, 1987, 61(8): 2840–2843CrossRefGoogle Scholar
  124. 124.
    Nan C W, Birringer R, Clarke D R, Gleiter H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. Journal of Applied Physics, 1997, 81(10): 6692–6699CrossRefGoogle Scholar
  125. 125.
    Nan C W, Liu G, Lin Y, Li M. Interface effect on thermal conductivity of carbon nanotube composites. Applied Physics Letters, 2004, 85(16): 3549–3551CrossRefGoogle Scholar
  126. 126.
    Ordonez-Miranda J, Yang R. Effect of a metallic coating on the thermal conductivity of carbon nanofiber–dielectric matrix com-posites. Composites Science and Technology, 2015, 109: 18–24CrossRefGoogle Scholar
  127. 127.
    Ordonez-Miranda J, Yang R, Alvarado-Gil J J. A model for the effective thermal conductivity of metal-nonmetal particulate composites. Journal of Applied Physics, 2012, 111(4): 044319CrossRefGoogle Scholar
  128. 128.
    Ordonez-Miranda J, Yang R, Alvarado-Gil J J. A crowding factor model for the thermal conductivity of particulate composites at non-dilute limit. Journal of Applied Physics, 2013, 114(6): 064306CrossRefGoogle Scholar
  129. 129.
    Minnich A, Chen G. Modified effective medium formulation for the thermal conductivity of nanocomposites. Applied Physics Letters, 2007, 91(7): 073105CrossRefGoogle Scholar
  130. 130.
    Ordonez-Miranda J, Yang R, Alvarado-Gil J J. On the thermal conductivity of particulate nanocomposites. Applied Physics Letters, 2011, 98(23): 233111CrossRefGoogle Scholar
  131. 131.
    Kim G H, Lee D, Shanker A, Shao L, Kwon MS, Gidley D, Kim J, Pipe K P. High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nature Materials, 2014, 14 (3): 295–300CrossRefGoogle Scholar
  132. 132.
    Agari Y, Ueda A, Tanaka M, Nagai S. Thermal conductivity of a polymer filled with particles in the wide range from low to superhigh volume content. Journal of Applied Polymer Science, 1990, 40(56): 929–941CrossRefGoogle Scholar
  133. 133.
    Wang B, Zhou L, Peng X. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. International Journal of Heat and Mass Transfer, 2003, 46(14): 2665–2672MATHCrossRefGoogle Scholar
  134. 134.
    Yu K W. Effective nonlinear response of fractal clusters. Physical Review B: Condensed Matter, 1994, 49(14): 9989–9992CrossRefGoogle Scholar
  135. 135.
    Devpura A, Phelan P E, Prasher R S. Size effects on the thermal conductivity of polymers laden with highly conductive filler particles. Microscale Thermophysical Engineering, 2001, 5(3): 177–189CrossRefGoogle Scholar
  136. 136.
    Duong H M, Papavassiliou D V, Lee L L, Mullen K J. Random walks in nanotube composites: improved algorithms and the role of thermal boundary resistance. Applied Physics Letters, 2005, 87(1): 013101CrossRefGoogle Scholar
  137. 137.
    Singh I V, Tanaka M, Endo M. Effect of interface on the thermal conductivity of carbon nanotube composites. International Journal of Thermal Sciences, 2007, 46(9): 842–847CrossRefGoogle Scholar
  138. 138.
    Duong H M, Yamamoto N, Papavassiliou D V, Maruyama S, Wardle B L. Inter-carbon nanotube contact in thermal transport of controlled-morphology polymer nanocomposites. Nanotechnology, 2009, 20(15): 155702CrossRefGoogle Scholar
  139. 139.
    Kumar S, Alam M A, Murthy J Y. Effect of percolation on thermal transport in nanotube composites. Applied Physics Letters, 2007, 90(10): 104105CrossRefGoogle Scholar
  140. 140.
    Kumar S, Murthy J Y, Alam M A. Percolating conduction in finite nanotube networks. Physical Review Letters, 2005, 95(6): 066802CrossRefGoogle Scholar
  141. 141.
    Tian W, Yang R. Effect of interface scattering on phonon thermal conductivity percolation in random nanowire composites. Applied Physics Letters, 2007, 90(26): 263105CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Bin Liu
    • 1
    • 2
    • 3
  • Lan Dong
    • 1
    • 2
    • 3
  • Qing Xi
    • 1
    • 2
    • 3
  • Xiangfan Xu
    • 1
    • 2
    • 3
  • Jun Zhou
    • 1
    • 2
    • 3
  • Baowen Li
    • 4
  1. 1.Center for Phononics and Thermal Energy ScienceTongji UniversityShanghaiChina
  2. 2.China-EU Joint Center for NanophononicsTongji UniversityShanghaiChina
  3. 3.Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and EngineeringTongji UniversityShanghaiChina
  4. 4.Department of Mechanical EngineeringUniversity of ColoradoBoulderUSA

Personalised recommendations