Skip to main content

Review: Tip-based vibrational spectroscopy for nanoscale analysis of emerging energy materials

Abstract

Vibrational spectroscopy is one of the key instrumentations that provide non-invasive investigation of structural and chemical composition for both organic and inorganic materials. However, diffraction of light fundamentally limits the spatial resolution of far-field vibrational spectroscopy to roughly half the wavelength. In this article, we thoroughly review the integration of atomic force microscopy (AFM) with vibrational spectroscopy to enable the nanoscale characterization of emerging energy materials, which has not been possible with far-field optical techniques. The discussed methods utilize the AFM tip as a nanoscopic tool to extract spatially resolved electronic or molecular vibrational resonance spectra of a sample illuminated by a visible or infrared (IR) light source. The absorption of light by electrons or individual functional groups within molecules leads to changes in the sample’s thermal response, optical scattering, and atomic force interactions, all of which can be readily probed by an AFM tip. For example, photothermal induced resonance (PTIR) spectroscopy methods measure a sample’s local thermal expansion or temperature rise. Therefore, they use the AFM tip as a thermal detector to directly relate absorbed IR light to the thermal response of a sample. Optical scattering methods based on scanning near-field optical microscopy (SNOM) correlate the spectrum of scattered near-field light with molecular vibrational modes. More recently, photo-induced force microscopy (PiFM) has been developed to measure the change of the optical force gradient due to the light absorption by molecular vibrational resonances using AFM’s superb sensitivity in detecting tip-sample force interactions. Such recent efforts successfully breech the diffraction limit of light to provide nanoscale spatial resolution of vibrational spectroscopy, which will become a critical technique for characterizing novel energy materials.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Derrick M, Stulick D, Landry J. Infrared Spectroscopy in Conservation Science. Getty Conservation Institute, USA, 2000

    Google Scholar 

  2. 2.

    Griffiths P R, de Haseth J A. Fourier Transform Infrared Spectrometry, 2nd ed. Hoboken: John Wiley and Sons, 2007

    Google Scholar 

  3. 3.

    Bhargava R, Ribar T, Koenig J. Towards faster FT-IR imaging by reducing noise. Applied Spectroscopy, 1999, 53(11): 1313–1322

    Google Scholar 

  4. 4.

    Salzer R, Siesler H W. Infrared and Raman Spectroscopic Imaging. Weinheim: Wiley-VCH, 2009

    Google Scholar 

  5. 5.

    Chen G. Nanoscale heat transfer and nanostructured thermoelectrics. IEEE Transactions on Components, Packaging, and Manufacturing Technology, 2006, 29(2): 238–246

    MathSciNet  Google Scholar 

  6. 6.

    Ghashami M, Cho S K, Park K. Near-field enhanced thermionic energy conversion for renewable energy recycling. Journal of Quantitative Spectroscopy & Radiative Transfer, 2017, 198: 59–67

    Google Scholar 

  7. 7.

    Park K, Zhang Z M. Fundamentals and applications of near-field radiative energy transfer. Frontiers in Heat & Mass Transfer, 2013, 4(1): 13001

    Google Scholar 

  8. 8.

    Novotny L, Hecht B. Principles of Nano-Optics. Cambridge: Cambridge University Press, 2005

    Google Scholar 

  9. 9.

    Zayats A V, Richards D. Nano-optics and Near-field Optical Microscopy. Norwood: Artech House, 2009

    Google Scholar 

  10. 10.

    Orrit M. Nobel Prize in chemistry: celebrating optical nanoscopy. Nature Photonics, 2014, 8(12): 887–888

    Google Scholar 

  11. 11.

    Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles. Morlenbach: John Wiley & Sons, 1983

    Google Scholar 

  12. 12.

    Miller L M, Dumas P. Chemical imaging of biological tissue with synchrotron infrared light. Biochimica et Biophysica Acta, 2006, 1758(7): 846–857

    Google Scholar 

  13. 13.

    Sullivan D H, Conner W C, Harold M P. Surface analysis with FTIR emission spectroscopy. Applied Spectroscopy, 1992, 46(5): 811–818

    Google Scholar 

  14. 14.

    Globus T R, Woolard D L, Khromova T, Crowe T W, Bykhovskaia M, Gelmont B L, Hesler J, Samuels A C. THz-spectroscopy of biological molecules. Journal of Biological Physics, 2003, 29(2–3): 89–100

    Google Scholar 

  15. 15.

    Jin X Y, Kim K J, Lee H S. Grazing incidence reflection absorption Fourier transform infrared (GIRA-FTIR) spectroscopic studies on the ferroelectric behavior of poly(vinylidene fluoride-trifluoroethylene) ultrathin films. Polymer, 2005, 46(26): 12410–12415

    Google Scholar 

  16. 16.

    Schliesser A, Brehm M, Keilmann F, van der Weide D. Frequencycomb infrared spectrometer for rapid, remote chemical sensing. Optics Express, 2005, 13(22): 9029–9038

    Google Scholar 

  17. 17.

    Nyga P, Drachev V P, Thoreson M D, Shalaev V M. Mid-IR plasmonics and photomodification with Ag films. Applied Physics. B, Lasers and Optics, 2008, 93(1): 59–68

    Google Scholar 

  18. 18.

    Yu A I T, Pusep A, Milekhin A H. FTIR spectroscopy of longitudinal confined phonons and plasmon-phonon vibrational modes in GaAsn/AlAsm superlattices. Solid-State Electronics, 1994, 37(4–6): 613–616

    Google Scholar 

  19. 19.

    Raman C V. A change of wave-length in light scattering. Nature, 1928, 121(3051): 619–619

    Google Scholar 

  20. 20.

    Kudelski A. Analytical applications of Raman spectroscopy. Talanta, 200, 76(1): 1–8

  21. 21.

    Hayazawa N, Saito Y, Kawata S. Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy. Applied Physics Letters, 2004, 85(25): 6239–6241

    Google Scholar 

  22. 22.

    Efremov E V, Ariese F, Gooijer C. Achievements in resonance Raman spectroscopy: review of a technique with a distinct analytical chemistry potential. Analytica Chimica Acta, 2008, 606(2): 119–134

    Google Scholar 

  23. 23.

    Tolles W M, Nibler J W, McDonald J R, Harvey A B. A review of the theory and application of coherent anti-stokes Raman spectroscopy (CARS). Applied Spectroscopy, 1977, 31(4): 253–271

    Google Scholar 

  24. 24.

    Fan M, Andrade G F S, Brolo A G. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Analytica Chimica Acta, 2011, 693(1–2): 7–25

    Google Scholar 

  25. 25.

    Rostron P, Gaber S, Gaber D. Raman spectroscopy. International Journal of Engineering Research and Technology, 2016, 869(1): 50–64

    Google Scholar 

  26. 26.

    Festy F, Demming A, Richards D. Resonant excitation of tip plasmons for tip-enhanced Raman SNOM. Ultramicroscopy, 2004, 100(3–4): 437–441

    Google Scholar 

  27. 27.

    Binnig G, Quate C F, Gerber C. Atomic force microscope. Physical Review Letters, 1986, 56(9): 930–933

    Google Scholar 

  28. 28.

    Martin Y, Williams C C, Wickramasinghe H K. Atomic force microscope-force mapping and profiling on a sub 100-nm scale. Journal of Applied Physics, 1987, 61(10): 4723–4729

    Google Scholar 

  29. 29.

    Albrecht T R, Quate C F. Atomic resolution imaging of a nonconductor by atomic force microscopy. Journal of Applied Physics, 1987, 62(7): 2599–2602

    Google Scholar 

  30. 30.

    Rugar D, Mamin H J, Guethner P. Improved fiber-optic interferometer for atomic force microscopy. Applied Physics Letters, 1989, 55(25): 2588–2590

    Google Scholar 

  31. 31.

    Butt H J, Cappella B, Kappl M. Force measurements with the atomic force microscope: technique, interpretation and applications. Surface Science Reports, 2005, 59(1–6): 1–152

    Google Scholar 

  32. 32.

    Yang H U, Raschke M B. Resonant optical gradient force interaction for nano-imaging and -spectroscopy. New Journal of Physics, 2016, 18(5): 053042

    Google Scholar 

  33. 33.

    Giessibl F J. AFM’s path to atomic resolution. Materials Today, 2005, 8(5): 32–41

    Google Scholar 

  34. 34.

    Sarid V, Elings V. Review of scanning force microscopy. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 1991, 9(2): 431

    Google Scholar 

  35. 35.

    Giessibl F J. Atomic force microscopy in ultrahigh vacuum. Japanese Journal of Applied Physics, 1994, 33(6S): 3726–3734

    Google Scholar 

  36. 36.

    Noy A, Vezenov D V, Kayyem J F, Meade T J, Lieber C M. Stretching and breaking duplex DNA by chemical force microscopy. Chemistry & biology, 1997, 4(7): 519–527

    Google Scholar 

  37. 37.

    Giessibl F J. Advances in atomic force microscopy. Reviews of Modern Physics, 2003, 75(3): 949–983

    Google Scholar 

  38. 38.

    Morita S, Giessibl F, Wiesendanger R. Noncontact Atomic Force Microscopy, 2nd ed. Berlin: Springer-Verlag Berlin Heidelberg, 2009

    Google Scholar 

  39. 39.

    Hammiche A, Pollock H M, Reading M, Claybourn M, Turner P H, Jewkes K. Photothermal FT-IR spectroscopy: a step towards FT-IR microscopy at a resolution better than the diffraction limit. Applied Spectroscopy, 1999, 53(7): 810–815

    Google Scholar 

  40. 40.

    Bozec L, Hammiche A, Pollock H M, Conroy M, Chalmers J M, Everall N J, Turin L. Localized photothermal infrared spectroscopy using a proximal probe. Journal of Applied Physics, 2001, 90(10): 5159–5165

    Google Scholar 

  41. 41.

    Hammiche A, Bozec L, Pollock H M, German M, Reading M. Progress in near-field photothermal infra-red microspectroscopy. Journal of Microscopy, 2004, 213(Pt 2): 129–134

    MathSciNet  Google Scholar 

  42. 42.

    Majumdar A. Scanning thermal microscopy. Annual Review of Materials Science, 1999, 29(1): 505–585

    Google Scholar 

  43. 43.

    Bozec L, Hammiche A, Tobin M, Chalmers J, Everall N, Pollock H. Near-field photothermal Fourier transform infrared spectroscopy using synchrotron radiation. Measurement Science & Technology, 2002, 13(8): 1217–1222

    Google Scholar 

  44. 44.

    Donaldson P M, Kelley C S, Frogley M D, Filik J, Wehbe K, Cinque G. Broadband near-field infrared spectromicroscopy using photothermal probes and synchrotron radiation. Optics Express, 2016, 24(3): 1852–1864

    Google Scholar 

  45. 45.

    Dazzi A, Prazeres R, Glotin F, Ortega J M. Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Optics Letters, 2005, 30(18): 2388–2390

    Google Scholar 

  46. 46.

    Dazzi A, Prazeres R, Glotin F, Ortega J M. Subwavelength infrared spectromicroscopy using an AFM as a local absorption sensor. Infrared Physics & Technology, 2006, 49(1–2): 113–121

    Google Scholar 

  47. 47.

    Dazzi A, Prazeres R, Glotin F, Ortega J M, Al-Sawaftah M, de Frutos M. Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method. Ultramicroscopy, 2008, 108(7): 635–641

    Google Scholar 

  48. 48.

    Mayet C, Dazzi A, Prazeres R, Allot F, Glotin F, Ortega J M. Sub- 100 nm IR spectromicroscopy of living cells. Optics Letters, 2008, 33(14): 1611–1613

    Google Scholar 

  49. 49.

    Houel J, Homeyer E, Sauvage S, Boucaud P, Dazzi A, Prazeres R, Ortéga J M. Midinfrared absorption measured at a lambda/400 resolution with an atomic force microscope. Optics Express, 2009, 17(13): 10887–10894

    Google Scholar 

  50. 50.

    Mayet C, Dazzi A, Prazeres R, Ortega J M, Jaillard D. In situ identification and imaging of bacterial polymer nanogranules by infrared nanospectroscopy. Analyst, 2010, 135(10): 2540–2545

    Google Scholar 

  51. 51.

    Prater C, Kjoller K, Cook D, Shetty R, Meyers G, Reinhardt C, Felts J, King W, Vodopyanov K, Dazzi A. Nanoscale infrared spectroscopy of materials by atomic force microscopy. Microscopy and Analysis (Americas ed.), 2010, 24(3): 5–8

    Google Scholar 

  52. 52.

    Marcott C, Lo M, Kjoller K, Prater C, Noda I. Spatial differentiation of sub-micrometer domains in a poly(hydroxyalkanoate) copolymer using instrumentation that combines atomic force microscopy (AFM) and infrared (IR) spectroscopy. Applied Spectroscopy, 2011, 65(10): 1145–1150

    Google Scholar 

  53. 53.

    Felts J R, Kjoller K, Lo M, Prater C B, King WP. Nanometer-scale infrared spectroscopy of heterogeneous polymer nanostructures fabricated by tip-based nanofabrication. ACS Nano, 2012, 6(9): 8015–8021

    Google Scholar 

  54. 54.

    Lahiri B, Holland G, Centrone A. Chemical imaging beyond the diffraction limit: experimental validation of the PTIR technique. Small, 2013, 9(3): 439–445

    Google Scholar 

  55. 55.

    Felts J R, Kjoller K, Prater C B, King W P. Enhanced nanometerscale infrared spectroscopy with a contact mode microcantilever having an internal resonator paddle. In: 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS). Hong Kong, China, 2010, 136–139

    Google Scholar 

  56. 56.

    Policar C, Waern J B, Plamont MA, Clède S, Mayet C, Prazeres R, Ortega J M, Vessières A, Dazzi A. Subcellular IR imaging of a metal-carbonyl moiety using photothermally induced resonance. Angewandte Chemie (International ed. in English), 2011, 50(4): 860–864

    Google Scholar 

  57. 57.

    Lu F, Belkin M A. Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers. Optics Express, 2011, 19(21): 19942–19947

    Google Scholar 

  58. 58.

    Dazzi A, Prater C B, Hu Q, Chase D B, Rabolt J F, Marcott C. AFM-IR: combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization. Applied Spectroscopy, 2012, 66(12): 1365–1384

    Google Scholar 

  59. 59.

    Kwon B, Schulmerich M V, Elgass L J, Kong R, Holton S E, Bhargava R, King WP. Infrared microspectroscopy combined with conventional atomic force microscopy. Ultramicroscopy, 2012, 116: 56–61

    Google Scholar 

  60. 60.

    Felts J R, Cho H, Yu M F, Bergman L A, Vakakis A F, King WP. Atomic force microscope infrared spectroscopy on 15 nm scale polymer nanostructures. Review of Scientific Instruments, 2013, 84(2): 023709

    Google Scholar 

  61. 61.

    Cho H, Felts J R, Yu M F, Bergman L A, Vakakis A F, King W P. Improved atomic force microscope infrared spectroscopy for rapid nanometer-scale chemical identification. Nanotechnology, 2013, 24(44): 444007

    Google Scholar 

  62. 62.

    Lu F, Jin M, Belkin M. Tip-enhanced infrared nanospectroscopy via molecular expansion force detection. Nature Photonics, 2014, 8 (4): 307–312

    Google Scholar 

  63. 63.

    Felts J R, Law S, Roberts C M, Podolskiy V, Wasserman D M, King W P. Near-field infrared absorption of plasmonic semiconductor microparticles studied using atomic force microscope infrared spectroscopy. Applied Physics Letters, 2013, 102(15): 152110

    Google Scholar 

  64. 64.

    Lahiri B, Holland G, Aksyuk V, Centrone A. Nanoscale imaging of plasmonic hot spots and dark modes with the photothermalinduced resonance technique. Nano Letters, 2013, 13(7): 3218–3224

    Google Scholar 

  65. 65.

    Katzenmeyer A M, Chae J, Kasica R, Holland G, Lahiri B, Centrone A. Nanoscale imaging and spectroscopy of plasmonic modes with the PTIR technique. Advanced Optical Materials, 2014, 2(8): 718–722

    Google Scholar 

  66. 66.

    Katzenmeyer A M, Aksyuk V, Centrone A. Nanoscale infrared spectroscopy: improving the spectral range of the photothermal induced resonance technique. Analytical Chemistry, 2013, 85(4): 1972–1979

    Google Scholar 

  67. 67.

    Katzenmeyer A M, Holland G, Kjoller K, Centrone A. Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution. Analytical Chemistry, 2015, 87(6): 3154–3159

    Google Scholar 

  68. 68.

    Williams C C, Wickramasinghe H K. Scanning thermal profiler. Applied Physics Letters, 1986, 49(23): 1587–1589

    Google Scholar 

  69. 69.

    Shi L, Majumdar A. Thermal transport mechanisms at nanoscale point contacts. Journal of Heat Transfer, 2002, 124(2): 329

    Google Scholar 

  70. 70.

    Sadat S, Tan A, Chua Y J, Reddy P. Nanoscale thermometry using point contact thermocouples. Nano Letters, 2010, 10(7): 2613–2617

    Google Scholar 

  71. 71.

    Kim K, Jeong W, Lee W, Reddy P. Ultra-high vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry. ACS Nano, 2012, 6(5): 4248–4257

    Google Scholar 

  72. 72.

    Dai Z, King W P, Park K. A 100 nanometer scale resistive heaterthermometer on a silicon cantilever. Nanotechnology, 2009, 20(9): 095301

    Google Scholar 

  73. 73.

    Lee J, Beechem T, Wright T L, Nelson B A, Graham S, King W P. Electrical, thermal, and mechanical characterization of silicon microcantilever heaters. Journal of Microelectromechanical Systems, 2006, 15(6): 1644–1655

    Google Scholar 

  74. 74.

    Corbin E A, Park K, King W P. Room-temperature temperature sensitivity and resolution of doped-silicon microcantilevers. Applied Physics Letters, 2009, 94(24): 243503

    Google Scholar 

  75. 75.

    Dazzi A, Glotin F, Carminati R. Theory of infrared nanospectroscopy by photothermal induced resonance. Journal of Applied Physics, 2010, 107(12): 124519

    Google Scholar 

  76. 76.

    Pechenezhskiy I V, Hong X, Nguyen G D, Dahl J E P, Carlson R M K, Wang F, Crommie M F. Infrared spectroscopy of molecular submonolayers on surfaces by infrared scanning tunneling microscopy: tetramantane on Au111. Physical Review Letters, 2013, 111(12): 126101

    Google Scholar 

  77. 77.

    Nguyen T Q, Wu J, Tolbert S H, Schwartz B J. Control of energy transport in conjugated polymers using an ordered mesoporous silica matrix. Advanced Materials, 2001, 13(8): 609–611

    Google Scholar 

  78. 78.

    Luo T, Chen G. Nanoscale heat transfer–from computation to experiment. Physical chemistry chemical physics: PCCP, 2013, 15 (10): 3389–3412

    Google Scholar 

  79. 79.

    Wang Y, Liu J, Zhou J, Yang R. Thermoelectric transport across nanoscale polymer–semiconductor–polymer junctions. Journal of Physical Chemistry C, 2013, 117(47): 24716–24725

    Google Scholar 

  80. 80.

    Merklin G T, He L, Griffiths P R. Surface-enhanced infrared absorption spectrometry of p-nitrothiophenol and its disulfide. Applied Spectroscopy, 1999, 53(11): 1448–1453

    Google Scholar 

  81. 81.

    Pohl D W, Denk W, Lanz M. Optical stethoscopy: image recording with resolution λ/20. Applied Physics Letters, 1984, 44(7): 651–653

    Google Scholar 

  82. 82.

    Betzig E, Lewis A, Harootunian A, Isaacson M, Kratschmer E. Near field scanning optical microscopy (NSOM): development and biophysical applications. Biophysical Journal, 1986, 49(1): 269–279

    Google Scholar 

  83. 83.

    Labardi M, Gucciardi P G, Allegrini M, Pelosi C. Assessment of NSOM resolution on III–V semiconductor thin films. Applied Physics. A, Materials Science & Processing, 1998, 66(S1): S397–S402

    Google Scholar 

  84. 84.

    Isaacson M. Near-field scanning optical microscopy II. Journal of Vacuum Science and Technology. B, Nanotechnology & Microelectronics: Materials, Processing, Measurement, & Phenomena: JVST B, 1991, 9(6): 3103

    MathSciNet  Google Scholar 

  85. 85.

    Goodson K E, Ashegh M. Near-field optical thermometry. Microscale Thermophysical Engineering, 1997, 1(3): 225–235

    Google Scholar 

  86. 86.

    Sasaki M, Tanaka K, Hane K. Cantilever probe integrated with light-emitting diode, waveguide, aperture, and photodiode for scanning near-field optical microscope. Japan Society of Applied Physics, 2000, 39(12B): 7150–7153

    Google Scholar 

  87. 87.

    Michaelis J, Hettich C, Mlynek J, Sandoghdar V V. Optical microscopy using a single-molecule light source. Nature, 2000, 405(6784): 325–328

    Google Scholar 

  88. 88.

    Shubeita G T, Sekatskii S K, Dietler G, Potapova I, Mews A, Basché T. Scanning near-field optical microscopy using semiconductor nanocrystals as a local fluorescence and fluorescence resonance energy transfer source. Journal of Microscopy, 2003, 210(Pt 3): 274–278

    MathSciNet  Google Scholar 

  89. 89.

    Chevalier N, Nasse M J, Woehl J C, Reiss P, Bleuse J, Chandezon F, Huant S. CdSe single-nanoparticle based active tips for nearfield optical microscopy. Nanotechnology, 2005, 16(4): 613–618

    Google Scholar 

  90. 90.

    Kim J, Song K B. Recent progress of nano-technology with NSOM. Micron (Oxford, England: 1993), 2007, 38(4): 409–426

    Google Scholar 

  91. 91.

    Mauser N, Hartschuh A. Tip-enhanced near-field optical microscopy. Chemical Society Reviews, 2014, 43(4): 1248–1262

    Google Scholar 

  92. 92.

    Hartschuh A. Tip-enhanced near-field optical microscopy. Angewandte Chemie (International ed. in English), 2008, 47(43): 8178–8191

    Google Scholar 

  93. 93.

    Neuman T, Alonso-González P, Garcia-Etxarri A, Schnell M, Hillenbrand R, Aizpurua J. Mapping the near fields of plasmonic nanoantennas by scattering-type scanning near-field optical microscopy. Laser & Photonics Reviews, 2015, 9(6): 637–649

    Google Scholar 

  94. 94.

    Novotny L, Stranick S J. Near-field optical microscopy and spectroscopy with pointed probes. Annual Review of Physical Chemistry, 2006, 57(1): 303–331

    Google Scholar 

  95. 95.

    Lucas M, Riedo E. Invited review article: combining scanning probe microscopy with optical spectroscopy for applications in biology and materials science. The Review of Scientific Instruments, 2012, 83(6): 061101

    Google Scholar 

  96. 96.

    Hillenbrand R, Keilmann F. Complex optical constants on a subwavelength scale. Physical Review Letters, 2000, 85(14): 3029–3032

    Google Scholar 

  97. 97.

    Yang T J, Lessard G A, Quake S R. An apertureless near-field microscope for fluorescence imaging. Applied Physics Letters, 2000, 76(3): 378–380

    Google Scholar 

  98. 98.

    Labardi M, Tikhomirov O, Ascoli C, Allegrini M. Balanced homodyning for apertureless near-field optical imaging. The Review of Scientific Instruments, 2008, 79(3): 033709

    Google Scholar 

  99. 99.

    Gomez L, Bachelot R, Bouhelier A, Wiederrecht G P, Chang S H, Gray S K, Hua F, Jeon S, Rogers J A, Castro M E, Blaize S, Stefanon I, Lerondel G, Royer P. Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches. Journal of the Optical Society of America. B, Optical Physics, 2006, 23(5): 823

    Google Scholar 

  100. 100.

    Taubner T, Hillenbrand R, Keilmann F. Performance of visible and mid-infrared scattering-type near-field optical microscopes. Journal of Microscopy, 2003, 210(Pt 3): 311–314

    MathSciNet  Google Scholar 

  101. 101.

    Hillenbrand R, Knoll B, Keilmann F. Pure optical contrast in scattering-type scanning near-field microscopy. Journal of Microscopy, 2001, 202(Pt 1): 77–83

    MathSciNet  Google Scholar 

  102. 102.

    Raschke M B, Lienau C. Apertureless near-field optical microscopy: tip–sample coupling in elastic light scattering. Applied Physics Letters, 2003, 83(24): 5089–5091

    Google Scholar 

  103. 103.

    Knoll B, Keilmann F. Near-field probing of vibrational absorption for chemical microscopy. Nature, 1999, 399(6732): 134–137

    Google Scholar 

  104. 104.

    Knoll B, Keilmann F. Enhanced dielectric contrast in scatteringtype scanning near-field optical microscopy. Optics Communications, 2000, 182(4–6): 321–328

    Google Scholar 

  105. 105.

    Hillenbrand R, Taubner T, Keilmann F. Phonon-enhanced light matter interaction at the nanometre scale. Nature, 2002, 418(6894): 159–162

    Google Scholar 

  106. 106.

    Ocelic N, Huber A, Hillenbrand R. Pseudoheterodyne detection for background-free near-field spectroscopy. Applied Physics Letters, 2006, 89(10): 101124

    Google Scholar 

  107. 107.

    Ocelic N. Quantitative near-field phonon-polariton spectroscopy. Dissertation for the Doctoral Degree. Munich: Technical University of Munich, 2007

    Google Scholar 

  108. 108.

    Schnell M, Carney P S, Hillenbrand R. Synthetic optical holography for rapid nanoimaging. Nature Communications, 2014, 5: 3499

    Google Scholar 

  109. 109.

    Deutsch B, Hillenbrand R, Novotny L. Near-field amplitude and phase recovery using phase-shifting interferometry. Optics Express, 2008, 16(2): 494–501

    Google Scholar 

  110. 110.

    Huber A J, Keilmann F, Wittborn J, Aizpurua J, Hillenbrand R. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano Letters, 2008, 8(11): 3766–3770

    Google Scholar 

  111. 111.

    O’Callahan B T, Lewis W E, Jones A C, Raschke M B. Spectral frustration and spatial coherence in thermal near-field spectro-scopy. Physical Review B: Condensed Matter and Materials Physics, 2014, 89(24): 245446

    Google Scholar 

  112. 112.

    Babuty A, Joulain K, Chapuis P O, Greffet J J, De Wilde Y. Blackbody spectrum revisited in the near field. Physical Review Letters, 2013, 110(14): 146103

    Google Scholar 

  113. 113.

    O’Callahan B T, Raschke M B. Laser heating of scanning probe tips for thermal near-field spectroscopy and imaging. APL Photonics, 2017, 2(2):021301

    Google Scholar 

  114. 114.

    Schnell M, García-Etxarri A, Huber A J, Crozier K, Aizpurua J, Hillenbrand R. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nature Photonics, 2009, 3(5): 287–291

    Google Scholar 

  115. 115.

    Jones A C, Olmon R L, Skrabalak S E, Wiley B J, Xia Y N, Raschke M B. Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires. Nano Letters, 2009, 9(7): 2553–2558

    Google Scholar 

  116. 116.

    Taubner T, Keilmann F, Hillenbrand R. Nanomechanical resonance tuning and phase effects in optical near-field interaction. Nano Letters, 2004, 4(9): 1669–1672

    Google Scholar 

  117. 117.

    Zhang L M, Andreev G O, Fei Z, McLeod A S, Dominguez G, Thiemens M, Castro-Neto A H, Basov D N, Fogler M M. Nearfield spectroscopy of silicon dioxide thin films. Physical Review B: Condensed Matter and Materials Physics, 2012, 85(7): 075419

    Google Scholar 

  118. 118.

    Fei Z, Andreev G O, Bao W, Zhang L M, McLeod A S, Wang C, Stewart M K, Zhao Z, Dominguez G, Thiemens M, Fogler M M, Tauber M J, Castro-Neto A H, Lau C N, Keilmann F, Basov D N. Infrared nanoscopy of dirac plasmons at the graphene-SiO2 interface. Nano Letters, 2011, 11(11): 4701–4705

    Google Scholar 

  119. 119.

    Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, García de Abajo F J, Hillenbrand R, Koppens F H. Optical nano-imaging of gate-tunable graphene plasmons. Nature, 2012, 487(7405): 77–81

    Google Scholar 

  120. 120.

    Huth F, Chuvilin A, Schnell M, Amenabar I, Krutokhvostov R, Lopatin S, Hillenbrand R. Resonant antenna probes for tipenhanced infrared near-field microscopy. Nano Letters, 2013, 13 (3): 1065–1072

    Google Scholar 

  121. 121.

    Xu X G, Tanur A E, Walker G C. Phase controlled homodyne infrared near-field microscopy and spectroscopy reveal inhomogeneity within and among individual boron nitride nanotubes. Journal of Physical Chemistry A, 2013, 117(16): 3348–3354

    Google Scholar 

  122. 122.

    Fei Z, Rodin A S, Gannett W, Dai S, Regan W, Wagner M, Liu M K, McLeod A S, Dominguez G, Thiemens M, Castro Neto A H, Keilmann F, Zettl A, Hillenbrand R, Fogler M M, Basov D N. Electronic and plasmonic phenomena at graphene grain boundaries. Nature Nanotechnology, 2013, 8(11): 821–825

    Google Scholar 

  123. 123.

    Berweger S, Nguyen D M, Muller E A, Bechtel H A, Perkins T T, Raschke M B. Nano-chemical infrared imaging of membrane proteins in lipid bilayers. Journal of the American Chemical Society, 2013, 135(49): 18292–18295

    Google Scholar 

  124. 124.

    Xu X G, Gilburd L, Walker G C. Phase stabilized homodyne of infrared scattering type scanning near-field optical microscopy. Applied Physics Letters, 2014, 105(26): 263104

    Google Scholar 

  125. 125.

    Yoxall E, Schnell M, Mastel S, Hillenbrand R. Magnitude and phase-resolved infrared vibrational nanospectroscopy with a swept quantum cascade laser. Optics Express, 2015, 23(10): 13358–13369

    Google Scholar 

  126. 126.

    Amarie S, Ganz T, Keilmann F. Mid-infrared near-field spectroscopy. Optics Express, 2009, 17(24): 21794–21801

    Google Scholar 

  127. 127.

    Amarie S, Keilmann F. Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy. Physical Review B: Condensed Matter and Materials Physics, 2011, 83 (4): 045404

    Google Scholar 

  128. 128.

    Keilmann F, Amarie S. Mid-infrared frequency comb spanning an octave based on an Er fiber laser and difference-frequency generation. Journal of Infrared, Millimeter and Terahertz Waves, 2012, 33(5): 479–484

    Google Scholar 

  129. 129.

    Amarie S, Zaslansky P, Kajihara Y, Griesshaber E, Schmahl WW, Keilmann F. Nano-FTIR chemical mapping of minerals in biological materials. Beilstein Journal of Nanotechnology, 2012, 3: 312–323

    Google Scholar 

  130. 130.

    Huth F, Govyadinov A, Amarie S, Nuansing W, Keilmann F, Hillenbrand R. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Letters, 2012, 12(8): 3973–3978

    Google Scholar 

  131. 131.

    Xu X G, Rang M, Craig I M, Raschke M B. Pushing the samplesize limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity. The Journal of Physical Chemistry Letters, 2012, 3(13): 1836–1841

    Google Scholar 

  132. 132.

    Govyadinov A A, Amenabar I, Huth F, Carney P S, Hillenbrand R. Quantitative measurement of local infrared absorption and dielectric function with tip-enhanced near-field microscopy. The Journal of Physical Chemistry Letters, 2013, 4(9): 1526–1531

    Google Scholar 

  133. 133.

    Amenabar I, Poly S, Nuansing W, Hubrich E H, Govyadinov A A, Huth F, Krutokhvostov R, Zhang L, Knez M, Heberle J, Bittner A M, Hillenbrand R. Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nature Communications, 2013, 4: 2890

    Google Scholar 

  134. 134.

    McLeod A S, Kelly P, Goldflam M D, Gainsforth Z, Westphal A J, Dominguez G, Thiemens MH, Fogler MM, Basov D N. Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved optical constants. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(8): 085136

    Google Scholar 

  135. 135.

    Khatib O, Wood J D, McLeod A S, Goldflam M D, Wagner M, Damhorst G L, Koepke J C, Doidge G P, Rangarajan A, Bashir R, Pop E, Lyding J W, Thiemens M H, Keilmann F, Basov D N. Graphene-based platform for infrared near-field nanospectroscopy of water and biological materials in an aqueous environment. ACS Nano, 2015, 9(8): 7968–7975

    Google Scholar 

  136. 136.

    Amenabar I, Poly S, Goikoetxea M, Nuansing W, Lasch P, Hillenbrand R. Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy. Nature Communications, 2017, 8: 14402

    Google Scholar 

  137. 137.

    Huth F, Schnell M, Wittborn J, Ocelic N, Hillenbrand R. Infraredspectroscopic nanoimaging with a thermal source. Nature Materials, 2011, 10(5): 352–356

    Google Scholar 

  138. 138.

    O’Callahan B T, Lewis W E, Möbius S, Stanley J C, Muller E A, Raschke M B. Broadband infrared vibrational nano-spectroscopy using thermal blackbody radiation. Optics Express, 2015, 23(25): 32063–32074

    Google Scholar 

  139. 139.

    Ikemoto Y, Ishikawa M, Nakashima S, Okamura H, Haruyama Y, Matsui S, Moriwaki T, Kinoshita T. Development of scattering near-field optical microspectroscopy apparatus using an infrared synchrotron radiation source. Optics Communications, 2012, 285 (8): 2212–2217

    Google Scholar 

  140. 140.

    Hermann P, Hoehl A, Patoka P, Huth F, Rühl E, Ulm G. Near-field imaging and nano-Fourier-transform infrared spectroscopy using broadband synchrotron radiation. Optics Express, 2013, 21(3): 2913–2919

    Google Scholar 

  141. 141.

    Bechtel H A, Muller E A, Olmon R L, Martin M C, Raschke M B. Ultrabroadband infrared nanospectroscopic imaging. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(20): 7191–7196

    Google Scholar 

  142. 142.

    Peragut F, Brubach J B, Roy P, de Wilde Y. Infrared near-field imaging and spectroscopy based on thermal or synchrotron radiation. Applied Physics Letters, 2014, 104(25): 251118

    Google Scholar 

  143. 143.

    Jones A C, Raschke M B. Thermal infrared near-field spectroscopy. Nano Letters, 2012, 12(3): 1475–1481

    Google Scholar 

  144. 144.

    Jones A C, O’Callahan B T, Yang H U, Raschke M B. The thermal near-field: coherence, spectroscopy, heat-transfer, and optical forces. Progress in Surface Science, 2013, 88(4): 349–392

    Google Scholar 

  145. 145.

    Alonso-González P, Albella P, Neubrech F, Huck C, Chen J, Golmar F, Casanova F, Hueso L E, Pucci A, Aizpurua J, Hillenbrand R. Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas. Physical Review Letters, 2013, 110(20): 203902

    Google Scholar 

  146. 146.

    Walford J N, Porto J A, Carminati R, Greffet J J, Adam P M, Hudlet S, Bijeon J L, Stashkevich A, Royer P. Influence of tip modulation on image formation in scanning near-field optical microscopy. Journal of Applied Physics, 2001, 89(9): 5159–5169

    Google Scholar 

  147. 147.

    Joulain K, Ben-Abdallah P, Chapuis P O, de Wilde Y, Babuty A, Henkel C. Strong tip–sample coupling in thermal radiation scanning tunneling microscopy. Journal of Quantitative Spectroscopy & Radiative Transfer, 2014, 136: 1–15

    Google Scholar 

  148. 148.

    Jarzembski A, Park K. Finite dipole model for extreme near-field thermal radiation between a tip and planar SiC substrate. Journal of Quantitative Spectroscopy & Radiative Transfer, 2017, 191: 67–74

    Google Scholar 

  149. 149.

    Cvitkovic A, Ocelic N, Hillenbrand R. Analytical model for quantitative prediction of material contrasts in scattering-type nearfield optical microscopy. Optics Express, 2007, 15(14): 8550–8565

    Google Scholar 

  150. 150.

    Cvitkovic A, Ocelic N, Aizpurua J, Guckenberger R, Hillenbrand R. Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap. Physical Review Letters, 2006, 97(6): 060801

    Google Scholar 

  151. 151.

    Renger J, Grafström S, Eng L M, Hillenbrand R. Resonant light scattering by near-field-induced phonon polaritons. Physical Review B: Condensed Matter and Materials Physics, 2005, 71 (7): 075410

    Google Scholar 

  152. 152.

    Fikri R, Barchiesi D, H’Dhili F, Bachelot R, Vial A, Royer P. Modeling recent experiments of apertureless near-field optical microscopy using 2D finite element method. Optics Communications, 2003, 221(1–3): 13–22

    Google Scholar 

  153. 153.

    Micic M, Klymyshyn N, Suh Y, Lu H. Finite element method simulation of the field distribution for AFM tip-enhanced surfaceenhanced Raman scanning microscopy. Journal of Physical Chemistry B, 2003, 107(7): 1574–1584

    Google Scholar 

  154. 154.

    Brehm M, Schliesser A, Cajko F, Tsukerman I, Keilmann F. Antenna-mediated back-scattering efficiency in infrared near-field microscopy. Optics Express, 2008, 16(15): 11203–11215

    Google Scholar 

  155. 155.

    Sukhov S V. Role of multipole moment of the probe in apertureless near-field optical microscopy. Ultramicroscopy, 2004, 101(2–4): 111–122

    Google Scholar 

  156. 156.

    Hatano H, Kawata S. Applicability of deconvolution and nonlinear optimization for reconstructing optical images from near-field optical microscope images. Journal of Microscopy, 1999, 194(2–3): 230–234

    Google Scholar 

  157. 157.

    Zhang Z M. Nano/microscale Heat Transfer, 5th ed. New York: McGraw Hill, 2007

    Google Scholar 

  158. 158.

    Lee B J, Park K, Zhang Z M. Energy pathways in nanoscale thermal radiation. Applied Physics Letters, 2007, 91(15): 153101

    Google Scholar 

  159. 159.

    Francoeur M, Basu S, Petersen S J. Electric and magnetic surface polariton mediated near-field radiative heat transfer between metamaterials made of silicon carbide particles. Optics Express, 2011, 19(20): 18774–18788

    Google Scholar 

  160. 160.

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature, 2012, 487(7405): 82–85

    Google Scholar 

  161. 161.

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012, 7(11): 699–712

    Google Scholar 

  162. 162.

    Gowen A A, O’Donnell C P, Cullen P J, Downey G, Frias J M. Hyperspectral imaging–an emerging process analytical tool for food quality and safety control. Trends in Food Science & Technology, 2007, 18(12): 590–598

    Google Scholar 

  163. 163.

    Lu G, Fei B. Medical hyperspectral imaging: a review. Journal of Biomedical Optics, 2014, 19(1): 010901

    Google Scholar 

  164. 164.

    Ossikovski R, Nguyen Q, Picardi G. Simple model for the polarization effects in tip-enhanced Raman spectroscopy. Physical Review B: Condensed Matter and Materials Physics, 2007, 75(4): 045412

    Google Scholar 

  165. 165.

    Wessel J. Surface-enhanced optical microscopy. Journal of the Optical Society of America. B, Optical Physics, 1985, 2(9): 1538

    Google Scholar 

  166. 166.

    Stöckle R M, Suh Y D, Deckert V, Zenobi R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chemical Physics Letters, 2000, 318(1–3): 131–136

    Google Scholar 

  167. 167.

    Hayazawa N, Inouye Y, Sekkat Z, Kawata S. Metallized tip amplification of near-field Raman scattering. Optics Communications, 2000, 183(1–4): 333–336

    Google Scholar 

  168. 168.

    Anderson M S. Locally enhanced Raman spectroscopy with an atomic force microscope. Applied Physics Letters, 2000, 76(21): 3130–3132

    Google Scholar 

  169. 169.

    Pettinger B, Picardi G, Schuster R, Ertl G. Surface enhanced Raman spectroscopy: towards single molecular spectroscopy. Electrochemistry, 2000, 68(12): 942–949

    Google Scholar 

  170. 170.

    Bailo E, Deckert V. Tip-enhanced Raman scattering. Chemical Society Reviews, 2008, 37(5): 921–930

    Google Scholar 

  171. 171.

    Yeo B S, Stadler J, Schmid T, Zenobi R, Zhang W. Tip-enhanced Raman Spectroscopy–its status, challenges and future directions. Chemical Physics Letters, 2009, 472(1–3): 1–13

    Google Scholar 

  172. 172.

    Kumar N, Mignuzzi S, Su W, Roy D. Tip-enhanced Raman spectroscopy: principles and applications. EPJ Techniques and Instrumentation, 2015, 2(1): 9

    Google Scholar 

  173. 173.

    Weber-Bargioni A, Schwartzberg A, Cornaglia M, Ismach A, Urban J J, Pang Y, Gordon R, Bokor J, Salmeron M B, Ogletree D F, Ashby P, Cabrini S, Schuck P J. Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes. Nano Letters, 2011, 11(3): 1201–1207

    Google Scholar 

  174. 174.

    Wickramasinghe H K, Chaigneau M, Yasukuni R, Picardi G, Ossikovski R. Billion-fold increase in tip-enhanced Raman signal. ACS Nano, 2014, 8(4): 3421–3426

    Google Scholar 

  175. 175.

    Sackrow M, Stanciu C, Lieb M A, Meixner A J. Imaging nanometre-sized hot spots on smooth AU films with highresolution tip-enhanced luminescence and Raman near-field optical microscopy. Chemphyschem, 2008, 9(2): 316–320

    Google Scholar 

  176. 176.

    Tarun A, Hayazawa N, Motohashi M, Kawata S. Highly efficient tip-enhanced Raman spectroscopy and microscopy of strained silicon. Review of Scientific Instruments, 2008, 79(1): 013706

    Google Scholar 

  177. 177.

    Saito Y, Hayazawa N, Kataura H, Murakami T, Tsukagoshi K, Inouye Y, Kawata S. Polarization measurements in tip-enhanced Raman spectroscopy applied to single-walled carbon nanotubes. Chemical Physics Letters, 2005, 410(1–3): 136–141

    Google Scholar 

  178. 178.

    Neugebauer U, Rösch P, Schmitt M, Popp J, Julien C, Rasmussen A, Budich C, Deckert V. On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy. Chemphyschem, 2006, 7(7): 1428–1430

    Google Scholar 

  179. 179.

    Böhme R, Richter M, Cialla D, Rösch P, Deckert V, Popp J. Towards a specific characterisation of components on a cell surface-combined TERS-investigations of lipids and human cells. Journal of Raman Spectroscopy: JRS, 2009, 40(10): 1452–1457

    Google Scholar 

  180. 180.

    Bailo E, Deckert V. Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method. Angewandte Chemie (International ed. in English), 2008, 47(9): 1658–1661

    Google Scholar 

  181. 181.

    Deckert-Gaudig T, Bailo E, Deckert V. Tip-enhanced Raman scattering (TERS) of oxidised glutathione on an ultraflat gold nanoplate. Physical chemistry chemical physics: PCCP, 2009, 11 (34): 7360–7362

    Google Scholar 

  182. 182.

    Yeo B S, Amstad E, Schmid T, Stadler J, Zenobi R. Nanoscale probing of a polymer-blend thin film with tip-enhanced Raman spectroscopy. Small, 2009, 5(8): 952–960

    Google Scholar 

  183. 183.

    van Schrojenstein Lantman E M, Deckert-Gaudig T, Mank A J G, Deckert V, Weckhuysen B M. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nature Nanotechnology, 2012, 7(9): 583–586

    Google Scholar 

  184. 184.

    Wang X, Zhang D, Braun K, Egelhaaf H J, Brabec C J, Meixner A J. High-resolution spectroscopic mapping of the chemical contrast from nanometer domains in P3HT: PCBM organic blend films for solar-cell applications. Advanced Functional Materials, 2010, 20 (3): 492–499

    Google Scholar 

  185. 185.

    Lee N, Hartschuh R D, Mehtani D, Kisliuk A, Maguire J F, Green M, Foster M D, Sokolov A P. High contrast scanning nano-Raman spectroscopy of silicon. Journal of Raman Spectroscopy: JRS, 2007, 38(6): 789–796

    Google Scholar 

  186. 186.

    Hayazawa N, Yano T, Watanabe H, Inouye Y, Kawata S. Detection of an individual single-wall carbon nanotube by tip-enhanced nearfield Raman spectroscopy. Chemical Physics Letters, 2003, 376(1–2): 174–180

    Google Scholar 

  187. 187.

    Hoffmann G G, de With G, Loos J. Micro-Raman and tip-enhanced Raman spectroscopy of carbon allotropes. Macromolecular Symposia, 2008, 265(1): 1–11

    Google Scholar 

  188. 188.

    Neacsu C C, Dreyer J, Behr N, Raschke M B. Scanning-probe Raman spectroscopy with single-molecule sensitivity. Physical Review B: Condensed Matter and Materials Physics, 2007, 75(23): 193406

    Google Scholar 

  189. 189.

    Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L, Hou J G. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature, 2013, 498(7452): 82–86

    Google Scholar 

  190. 190.

    Yeo B S, Zhang W, Vannier C, Zenobi R. Enhancement of Raman signals with silver-coated tips. Applied Spectroscopy, 2006, 60 (10): 1142–1147

    Google Scholar 

  191. 191.

    Cui X, Zhang W, Yeo B S, Zenobi R, Hafner C, Erni D. Tuning the resonance frequency of Ag-coated dielectric tips. Optics Express, 2007, 15(13): 8309–8316

    Google Scholar 

  192. 192.

    Ichimura T, Watanabe H, Morita Y, Verma P, Kawata S, Inouye Y. Temporal fluctuation of tip-enhanced Raman spectra of adenine molecules temporal fluctuation of tip-enhanced Raman spectra of adenine molecules. Journal of Physical Chemistry C, 2007, 111 (26): 9460–9464

    Google Scholar 

  193. 193.

    Hayazawa N, Yano T A, Kawata S. Highly reproducible tipenhanced Raman scattering using an oxidized and metallized silicon cantilever tip as a tool for everyone. Journal of Raman Spectroscopy: JRS, 2012, 43(9): 1177–1182

    Google Scholar 

  194. 194.

    Jahng J, Tork Ladani F, Khan R M, Potma E O. Photo-induced force for spectroscopic imaging at the nanoscale. Proceedings of the Society for Photo-Instrumentation Engineers, 2016, 9764: 97641J

    Google Scholar 

  195. 195.

    Nowak D, Morrison W, Wickramasinghe H K, Jahng J, Potma E, Wan L, Ruiz R, Albrecht T R, Schmidt K, Frommer J, Sanders D P, Park S. Nanoscale chemical imaging by photoinduced force microscopy. Science Advances, 2016, 2(3): e1501571

    Google Scholar 

  196. 196.

    Rajapaksa I, Uenal K, Wickramasinghe H K. Image force microscopy of molecular resonance: a microscope principle. Applied Physics Letters, 2010, 97(7): 073121

    Google Scholar 

  197. 197.

    Rajapaksa I, Kumar Wickramasinghe H. Raman spectroscopy and microscopy based on mechanical force detection. Applied Physics Letters, 2011, 99(16): 161103

    Google Scholar 

  198. 198.

    Huang F, Tamma V A, Mardy Z, Burdett J, Wickramasinghe H K. Imaging nanoscale electromagnetic near-field distributions using optical forces. Scientific Reports, 2015, 5(1): 10610

    Google Scholar 

  199. 199.

    Jahng J, Fishman D A, Park S, Nowak D B, Morrison W A, Wickramasinghe H K, Potma E O. Linear and nonlinear optical spectroscopy at the nanoscale with photoinduced force microscopy. Accounts of Chemical Research, 2015, 48(10): 2671–2679

    Google Scholar 

  200. 200.

    Jahng J, Brocious J, Fishman D A, Yampolsky S, Nowak D, Huang F, Apkarian V A, Wickramasinghe H K, Potma E O. Ultrafast pump-probe force microscopy with nanoscale resolution. Applied Physics Letters, 2015, 106(8): 083113

    Google Scholar 

  201. 201.

    Murdick R A, Morrison W, Nowak D, Albrecht T R, Jahng J, Park S. Photoinduced force microscopy: a technique for hyperspectral nanochemical mapping. Japanese Journal of Applied Physics, 2017, 56(8): 08LA04

    Google Scholar 

  202. 202.

    Jahng J, Brocious J, Fishman D A, Huang F, Li X, Tamma V A, Wickramasinghe H K, Potma E O. Gradient and scattering forces in photoinduced force microscopy. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(15): 155417

    Google Scholar 

  203. 203.

    Jahng J, Ladani F T, Khan R M, Li X, Lee E S, Potma E O. Visualizing surface plasmon polaritons by their gradient force. Optics Letters, 2015, 40(21): 5058–5061

    Google Scholar 

  204. 204.

    Tumkur T U, Yang X, Cerjan B, Halas N J, Nordlander P, Thomann I. Photoinduced force mapping of plasmonic nanostructures. Nano Letters, 2016, 16(12): 7942–7949

    Google Scholar 

  205. 205.

    Tamma V A, Huang F, Nowak D, Kumar Wickramasinghe H. Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain. Applied Physics Letters, 2016, 108(23): 233107

    Google Scholar 

  206. 206.

    Ambrosio A, Devlin R C, Capasso F, Wilson W L. Observation of nanoscale refractive index contrast via photoinduced force microscopy. ACS Photonics, 2017, 4(4): 846–851

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (CBET-1605584) and the University of Utah Funding Incentive Seed Grant. A.J. also acknowledges financial supports from the University of Utah’s Sid Green Fellowship and the National Science Foundation Graduate Research Fellowship (No. 2016213209). C.S. acknowledges financial support from the University of Utah Undergraduate Research Opportunities Program (UROP).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Keunhan Park.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jarzembski, A., Shaskey, C. & Park, K. Review: Tip-based vibrational spectroscopy for nanoscale analysis of emerging energy materials. Front. Energy 12, 43–71 (2018). https://doi.org/10.1007/s11708-018-0524-8

Download citation

Keywords

  • vibrational spectroscopy
  • atomic force microscopy
  • photo-thermal induced resonance
  • scanning nearfield optical microscopy
  • tip-enhanced Raman spectroscopy
  • photo-induced force microscopy
  • molecular resonances
  • surface phonon polaritons
  • energy materials