Advertisement

Frontiers in Energy

, Volume 12, Issue 1, pp 43–71 | Cite as

Review: Tip-based vibrational spectroscopy for nanoscale analysis of emerging energy materials

  • Amun Jarzembski
  • Cedric Shaskey
  • Keunhan Park
Review Article

Abstract

Vibrational spectroscopy is one of the key instrumentations that provide non-invasive investigation of structural and chemical composition for both organic and inorganic materials. However, diffraction of light fundamentally limits the spatial resolution of far-field vibrational spectroscopy to roughly half the wavelength. In this article, we thoroughly review the integration of atomic force microscopy (AFM) with vibrational spectroscopy to enable the nanoscale characterization of emerging energy materials, which has not been possible with far-field optical techniques. The discussed methods utilize the AFM tip as a nanoscopic tool to extract spatially resolved electronic or molecular vibrational resonance spectra of a sample illuminated by a visible or infrared (IR) light source. The absorption of light by electrons or individual functional groups within molecules leads to changes in the sample’s thermal response, optical scattering, and atomic force interactions, all of which can be readily probed by an AFM tip. For example, photothermal induced resonance (PTIR) spectroscopy methods measure a sample’s local thermal expansion or temperature rise. Therefore, they use the AFM tip as a thermal detector to directly relate absorbed IR light to the thermal response of a sample. Optical scattering methods based on scanning near-field optical microscopy (SNOM) correlate the spectrum of scattered near-field light with molecular vibrational modes. More recently, photo-induced force microscopy (PiFM) has been developed to measure the change of the optical force gradient due to the light absorption by molecular vibrational resonances using AFM’s superb sensitivity in detecting tip-sample force interactions. Such recent efforts successfully breech the diffraction limit of light to provide nanoscale spatial resolution of vibrational spectroscopy, which will become a critical technique for characterizing novel energy materials.

Keywords

vibrational spectroscopy atomic force microscopy photo-thermal induced resonance scanning nearfield optical microscopy tip-enhanced Raman spectroscopy photo-induced force microscopy molecular resonances surface phonon polaritons energy materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Science Foundation (CBET-1605584) and the University of Utah Funding Incentive Seed Grant. A.J. also acknowledges financial supports from the University of Utah’s Sid Green Fellowship and the National Science Foundation Graduate Research Fellowship (No. 2016213209). C.S. acknowledges financial support from the University of Utah Undergraduate Research Opportunities Program (UROP).

References

  1. 1.
    Derrick M, Stulick D, Landry J. Infrared Spectroscopy in Conservation Science. Getty Conservation Institute, USA, 2000Google Scholar
  2. 2.
    Griffiths P R, de Haseth J A. Fourier Transform Infrared Spectrometry, 2nd ed. Hoboken: John Wiley and Sons, 2007Google Scholar
  3. 3.
    Bhargava R, Ribar T, Koenig J. Towards faster FT-IR imaging by reducing noise. Applied Spectroscopy, 1999, 53(11): 1313–1322Google Scholar
  4. 4.
    Salzer R, Siesler H W. Infrared and Raman Spectroscopic Imaging. Weinheim: Wiley-VCH, 2009Google Scholar
  5. 5.
    Chen G. Nanoscale heat transfer and nanostructured thermoelectrics. IEEE Transactions on Components, Packaging, and Manufacturing Technology, 2006, 29(2): 238–246MathSciNetGoogle Scholar
  6. 6.
    Ghashami M, Cho S K, Park K. Near-field enhanced thermionic energy conversion for renewable energy recycling. Journal of Quantitative Spectroscopy & Radiative Transfer, 2017, 198: 59–67Google Scholar
  7. 7.
    Park K, Zhang Z M. Fundamentals and applications of near-field radiative energy transfer. Frontiers in Heat & Mass Transfer, 2013, 4(1): 13001Google Scholar
  8. 8.
    Novotny L, Hecht B. Principles of Nano-Optics. Cambridge: Cambridge University Press, 2005Google Scholar
  9. 9.
    Zayats A V, Richards D. Nano-optics and Near-field Optical Microscopy. Norwood: Artech House, 2009Google Scholar
  10. 10.
    Orrit M. Nobel Prize in chemistry: celebrating optical nanoscopy. Nature Photonics, 2014, 8(12): 887–888Google Scholar
  11. 11.
    Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles. Morlenbach: John Wiley & Sons, 1983Google Scholar
  12. 12.
    Miller L M, Dumas P. Chemical imaging of biological tissue with synchrotron infrared light. Biochimica et Biophysica Acta, 2006, 1758(7): 846–857Google Scholar
  13. 13.
    Sullivan D H, Conner W C, Harold M P. Surface analysis with FTIR emission spectroscopy. Applied Spectroscopy, 1992, 46(5): 811–818Google Scholar
  14. 14.
    Globus T R, Woolard D L, Khromova T, Crowe T W, Bykhovskaia M, Gelmont B L, Hesler J, Samuels A C. THz-spectroscopy of biological molecules. Journal of Biological Physics, 2003, 29(2–3): 89–100Google Scholar
  15. 15.
    Jin X Y, Kim K J, Lee H S. Grazing incidence reflection absorption Fourier transform infrared (GIRA-FTIR) spectroscopic studies on the ferroelectric behavior of poly(vinylidene fluoride-trifluoroethylene) ultrathin films. Polymer, 2005, 46(26): 12410–12415Google Scholar
  16. 16.
    Schliesser A, Brehm M, Keilmann F, van der Weide D. Frequencycomb infrared spectrometer for rapid, remote chemical sensing. Optics Express, 2005, 13(22): 9029–9038Google Scholar
  17. 17.
    Nyga P, Drachev V P, Thoreson M D, Shalaev V M. Mid-IR plasmonics and photomodification with Ag films. Applied Physics. B, Lasers and Optics, 2008, 93(1): 59–68Google Scholar
  18. 18.
    Yu A I T, Pusep A, Milekhin A H. FTIR spectroscopy of longitudinal confined phonons and plasmon-phonon vibrational modes in GaAsn/AlAsm superlattices. Solid-State Electronics, 1994, 37(4–6): 613–616Google Scholar
  19. 19.
    Raman C V. A change of wave-length in light scattering. Nature, 1928, 121(3051): 619–619Google Scholar
  20. 20.
    Kudelski A. Analytical applications of Raman spectroscopy. Talanta, 200, 76(1): 1–8Google Scholar
  21. 21.
    Hayazawa N, Saito Y, Kawata S. Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy. Applied Physics Letters, 2004, 85(25): 6239–6241Google Scholar
  22. 22.
    Efremov E V, Ariese F, Gooijer C. Achievements in resonance Raman spectroscopy: review of a technique with a distinct analytical chemistry potential. Analytica Chimica Acta, 2008, 606(2): 119–134Google Scholar
  23. 23.
    Tolles W M, Nibler J W, McDonald J R, Harvey A B. A review of the theory and application of coherent anti-stokes Raman spectroscopy (CARS). Applied Spectroscopy, 1977, 31(4): 253–271Google Scholar
  24. 24.
    Fan M, Andrade G F S, Brolo A G. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Analytica Chimica Acta, 2011, 693(1–2): 7–25Google Scholar
  25. 25.
    Rostron P, Gaber S, Gaber D. Raman spectroscopy. International Journal of Engineering Research and Technology, 2016, 869(1): 50–64Google Scholar
  26. 26.
    Festy F, Demming A, Richards D. Resonant excitation of tip plasmons for tip-enhanced Raman SNOM. Ultramicroscopy, 2004, 100(3–4): 437–441Google Scholar
  27. 27.
    Binnig G, Quate C F, Gerber C. Atomic force microscope. Physical Review Letters, 1986, 56(9): 930–933Google Scholar
  28. 28.
    Martin Y, Williams C C, Wickramasinghe H K. Atomic force microscope-force mapping and profiling on a sub 100-nm scale. Journal of Applied Physics, 1987, 61(10): 4723–4729Google Scholar
  29. 29.
    Albrecht T R, Quate C F. Atomic resolution imaging of a nonconductor by atomic force microscopy. Journal of Applied Physics, 1987, 62(7): 2599–2602Google Scholar
  30. 30.
    Rugar D, Mamin H J, Guethner P. Improved fiber-optic interferometer for atomic force microscopy. Applied Physics Letters, 1989, 55(25): 2588–2590Google Scholar
  31. 31.
    Butt H J, Cappella B, Kappl M. Force measurements with the atomic force microscope: technique, interpretation and applications. Surface Science Reports, 2005, 59(1–6): 1–152Google Scholar
  32. 32.
    Yang H U, Raschke M B. Resonant optical gradient force interaction for nano-imaging and -spectroscopy. New Journal of Physics, 2016, 18(5): 053042Google Scholar
  33. 33.
    Giessibl F J. AFM’s path to atomic resolution. Materials Today, 2005, 8(5): 32–41Google Scholar
  34. 34.
    Sarid V, Elings V. Review of scanning force microscopy. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 1991, 9(2): 431Google Scholar
  35. 35.
    Giessibl F J. Atomic force microscopy in ultrahigh vacuum. Japanese Journal of Applied Physics, 1994, 33(6S): 3726–3734Google Scholar
  36. 36.
    Noy A, Vezenov D V, Kayyem J F, Meade T J, Lieber C M. Stretching and breaking duplex DNA by chemical force microscopy. Chemistry & biology, 1997, 4(7): 519–527Google Scholar
  37. 37.
    Giessibl F J. Advances in atomic force microscopy. Reviews of Modern Physics, 2003, 75(3): 949–983Google Scholar
  38. 38.
    Morita S, Giessibl F, Wiesendanger R. Noncontact Atomic Force Microscopy, 2nd ed. Berlin: Springer-Verlag Berlin Heidelberg, 2009Google Scholar
  39. 39.
    Hammiche A, Pollock H M, Reading M, Claybourn M, Turner P H, Jewkes K. Photothermal FT-IR spectroscopy: a step towards FT-IR microscopy at a resolution better than the diffraction limit. Applied Spectroscopy, 1999, 53(7): 810–815Google Scholar
  40. 40.
    Bozec L, Hammiche A, Pollock H M, Conroy M, Chalmers J M, Everall N J, Turin L. Localized photothermal infrared spectroscopy using a proximal probe. Journal of Applied Physics, 2001, 90(10): 5159–5165Google Scholar
  41. 41.
    Hammiche A, Bozec L, Pollock H M, German M, Reading M. Progress in near-field photothermal infra-red microspectroscopy. Journal of Microscopy, 2004, 213(Pt 2): 129–134MathSciNetGoogle Scholar
  42. 42.
    Majumdar A. Scanning thermal microscopy. Annual Review of Materials Science, 1999, 29(1): 505–585Google Scholar
  43. 43.
    Bozec L, Hammiche A, Tobin M, Chalmers J, Everall N, Pollock H. Near-field photothermal Fourier transform infrared spectroscopy using synchrotron radiation. Measurement Science & Technology, 2002, 13(8): 1217–1222Google Scholar
  44. 44.
    Donaldson P M, Kelley C S, Frogley M D, Filik J, Wehbe K, Cinque G. Broadband near-field infrared spectromicroscopy using photothermal probes and synchrotron radiation. Optics Express, 2016, 24(3): 1852–1864Google Scholar
  45. 45.
    Dazzi A, Prazeres R, Glotin F, Ortega J M. Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Optics Letters, 2005, 30(18): 2388–2390Google Scholar
  46. 46.
    Dazzi A, Prazeres R, Glotin F, Ortega J M. Subwavelength infrared spectromicroscopy using an AFM as a local absorption sensor. Infrared Physics & Technology, 2006, 49(1–2): 113–121Google Scholar
  47. 47.
    Dazzi A, Prazeres R, Glotin F, Ortega J M, Al-Sawaftah M, de Frutos M. Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method. Ultramicroscopy, 2008, 108(7): 635–641Google Scholar
  48. 48.
    Mayet C, Dazzi A, Prazeres R, Allot F, Glotin F, Ortega J M. Sub- 100 nm IR spectromicroscopy of living cells. Optics Letters, 2008, 33(14): 1611–1613Google Scholar
  49. 49.
    Houel J, Homeyer E, Sauvage S, Boucaud P, Dazzi A, Prazeres R, Ortéga J M. Midinfrared absorption measured at a lambda/400 resolution with an atomic force microscope. Optics Express, 2009, 17(13): 10887–10894Google Scholar
  50. 50.
    Mayet C, Dazzi A, Prazeres R, Ortega J M, Jaillard D. In situ identification and imaging of bacterial polymer nanogranules by infrared nanospectroscopy. Analyst, 2010, 135(10): 2540–2545Google Scholar
  51. 51.
    Prater C, Kjoller K, Cook D, Shetty R, Meyers G, Reinhardt C, Felts J, King W, Vodopyanov K, Dazzi A. Nanoscale infrared spectroscopy of materials by atomic force microscopy. Microscopy and Analysis (Americas ed.), 2010, 24(3): 5–8Google Scholar
  52. 52.
    Marcott C, Lo M, Kjoller K, Prater C, Noda I. Spatial differentiation of sub-micrometer domains in a poly(hydroxyalkanoate) copolymer using instrumentation that combines atomic force microscopy (AFM) and infrared (IR) spectroscopy. Applied Spectroscopy, 2011, 65(10): 1145–1150Google Scholar
  53. 53.
    Felts J R, Kjoller K, Lo M, Prater C B, King WP. Nanometer-scale infrared spectroscopy of heterogeneous polymer nanostructures fabricated by tip-based nanofabrication. ACS Nano, 2012, 6(9): 8015–8021Google Scholar
  54. 54.
    Lahiri B, Holland G, Centrone A. Chemical imaging beyond the diffraction limit: experimental validation of the PTIR technique. Small, 2013, 9(3): 439–445Google Scholar
  55. 55.
    Felts J R, Kjoller K, Prater C B, King W P. Enhanced nanometerscale infrared spectroscopy with a contact mode microcantilever having an internal resonator paddle. In: 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS). Hong Kong, China, 2010, 136–139Google Scholar
  56. 56.
    Policar C, Waern J B, Plamont MA, Clède S, Mayet C, Prazeres R, Ortega J M, Vessières A, Dazzi A. Subcellular IR imaging of a metal-carbonyl moiety using photothermally induced resonance. Angewandte Chemie (International ed. in English), 2011, 50(4): 860–864Google Scholar
  57. 57.
    Lu F, Belkin M A. Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers. Optics Express, 2011, 19(21): 19942–19947Google Scholar
  58. 58.
    Dazzi A, Prater C B, Hu Q, Chase D B, Rabolt J F, Marcott C. AFM-IR: combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization. Applied Spectroscopy, 2012, 66(12): 1365–1384Google Scholar
  59. 59.
    Kwon B, Schulmerich M V, Elgass L J, Kong R, Holton S E, Bhargava R, King WP. Infrared microspectroscopy combined with conventional atomic force microscopy. Ultramicroscopy, 2012, 116: 56–61Google Scholar
  60. 60.
    Felts J R, Cho H, Yu M F, Bergman L A, Vakakis A F, King WP. Atomic force microscope infrared spectroscopy on 15 nm scale polymer nanostructures. Review of Scientific Instruments, 2013, 84(2): 023709Google Scholar
  61. 61.
    Cho H, Felts J R, Yu M F, Bergman L A, Vakakis A F, King W P. Improved atomic force microscope infrared spectroscopy for rapid nanometer-scale chemical identification. Nanotechnology, 2013, 24(44): 444007Google Scholar
  62. 62.
    Lu F, Jin M, Belkin M. Tip-enhanced infrared nanospectroscopy via molecular expansion force detection. Nature Photonics, 2014, 8 (4): 307–312Google Scholar
  63. 63.
    Felts J R, Law S, Roberts C M, Podolskiy V, Wasserman D M, King W P. Near-field infrared absorption of plasmonic semiconductor microparticles studied using atomic force microscope infrared spectroscopy. Applied Physics Letters, 2013, 102(15): 152110Google Scholar
  64. 64.
    Lahiri B, Holland G, Aksyuk V, Centrone A. Nanoscale imaging of plasmonic hot spots and dark modes with the photothermalinduced resonance technique. Nano Letters, 2013, 13(7): 3218–3224Google Scholar
  65. 65.
    Katzenmeyer A M, Chae J, Kasica R, Holland G, Lahiri B, Centrone A. Nanoscale imaging and spectroscopy of plasmonic modes with the PTIR technique. Advanced Optical Materials, 2014, 2(8): 718–722Google Scholar
  66. 66.
    Katzenmeyer A M, Aksyuk V, Centrone A. Nanoscale infrared spectroscopy: improving the spectral range of the photothermal induced resonance technique. Analytical Chemistry, 2013, 85(4): 1972–1979Google Scholar
  67. 67.
    Katzenmeyer A M, Holland G, Kjoller K, Centrone A. Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution. Analytical Chemistry, 2015, 87(6): 3154–3159Google Scholar
  68. 68.
    Williams C C, Wickramasinghe H K. Scanning thermal profiler. Applied Physics Letters, 1986, 49(23): 1587–1589Google Scholar
  69. 69.
    Shi L, Majumdar A. Thermal transport mechanisms at nanoscale point contacts. Journal of Heat Transfer, 2002, 124(2): 329Google Scholar
  70. 70.
    Sadat S, Tan A, Chua Y J, Reddy P. Nanoscale thermometry using point contact thermocouples. Nano Letters, 2010, 10(7): 2613–2617Google Scholar
  71. 71.
    Kim K, Jeong W, Lee W, Reddy P. Ultra-high vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry. ACS Nano, 2012, 6(5): 4248–4257Google Scholar
  72. 72.
    Dai Z, King W P, Park K. A 100 nanometer scale resistive heaterthermometer on a silicon cantilever. Nanotechnology, 2009, 20(9): 095301Google Scholar
  73. 73.
    Lee J, Beechem T, Wright T L, Nelson B A, Graham S, King W P. Electrical, thermal, and mechanical characterization of silicon microcantilever heaters. Journal of Microelectromechanical Systems, 2006, 15(6): 1644–1655Google Scholar
  74. 74.
    Corbin E A, Park K, King W P. Room-temperature temperature sensitivity and resolution of doped-silicon microcantilevers. Applied Physics Letters, 2009, 94(24): 243503Google Scholar
  75. 75.
    Dazzi A, Glotin F, Carminati R. Theory of infrared nanospectroscopy by photothermal induced resonance. Journal of Applied Physics, 2010, 107(12): 124519Google Scholar
  76. 76.
    Pechenezhskiy I V, Hong X, Nguyen G D, Dahl J E P, Carlson R M K, Wang F, Crommie M F. Infrared spectroscopy of molecular submonolayers on surfaces by infrared scanning tunneling microscopy: tetramantane on Au111. Physical Review Letters, 2013, 111(12): 126101Google Scholar
  77. 77.
    Nguyen T Q, Wu J, Tolbert S H, Schwartz B J. Control of energy transport in conjugated polymers using an ordered mesoporous silica matrix. Advanced Materials, 2001, 13(8): 609–611Google Scholar
  78. 78.
    Luo T, Chen G. Nanoscale heat transfer–from computation to experiment. Physical chemistry chemical physics: PCCP, 2013, 15 (10): 3389–3412Google Scholar
  79. 79.
    Wang Y, Liu J, Zhou J, Yang R. Thermoelectric transport across nanoscale polymer–semiconductor–polymer junctions. Journal of Physical Chemistry C, 2013, 117(47): 24716–24725Google Scholar
  80. 80.
    Merklin G T, He L, Griffiths P R. Surface-enhanced infrared absorption spectrometry of p-nitrothiophenol and its disulfide. Applied Spectroscopy, 1999, 53(11): 1448–1453Google Scholar
  81. 81.
    Pohl D W, Denk W, Lanz M. Optical stethoscopy: image recording with resolution λ/20. Applied Physics Letters, 1984, 44(7): 651–653Google Scholar
  82. 82.
    Betzig E, Lewis A, Harootunian A, Isaacson M, Kratschmer E. Near field scanning optical microscopy (NSOM): development and biophysical applications. Biophysical Journal, 1986, 49(1): 269–279Google Scholar
  83. 83.
    Labardi M, Gucciardi P G, Allegrini M, Pelosi C. Assessment of NSOM resolution on III–V semiconductor thin films. Applied Physics. A, Materials Science & Processing, 1998, 66(S1): S397–S402Google Scholar
  84. 84.
    Isaacson M. Near-field scanning optical microscopy II. Journal of Vacuum Science and Technology. B, Nanotechnology & Microelectronics: Materials, Processing, Measurement, & Phenomena: JVST B, 1991, 9(6): 3103MathSciNetGoogle Scholar
  85. 85.
    Goodson K E, Ashegh M. Near-field optical thermometry. Microscale Thermophysical Engineering, 1997, 1(3): 225–235Google Scholar
  86. 86.
    Sasaki M, Tanaka K, Hane K. Cantilever probe integrated with light-emitting diode, waveguide, aperture, and photodiode for scanning near-field optical microscope. Japan Society of Applied Physics, 2000, 39(12B): 7150–7153Google Scholar
  87. 87.
    Michaelis J, Hettich C, Mlynek J, Sandoghdar V V. Optical microscopy using a single-molecule light source. Nature, 2000, 405(6784): 325–328Google Scholar
  88. 88.
    Shubeita G T, Sekatskii S K, Dietler G, Potapova I, Mews A, Basché T. Scanning near-field optical microscopy using semiconductor nanocrystals as a local fluorescence and fluorescence resonance energy transfer source. Journal of Microscopy, 2003, 210(Pt 3): 274–278MathSciNetGoogle Scholar
  89. 89.
    Chevalier N, Nasse M J, Woehl J C, Reiss P, Bleuse J, Chandezon F, Huant S. CdSe single-nanoparticle based active tips for nearfield optical microscopy. Nanotechnology, 2005, 16(4): 613–618Google Scholar
  90. 90.
    Kim J, Song K B. Recent progress of nano-technology with NSOM. Micron (Oxford, England: 1993), 2007, 38(4): 409–426Google Scholar
  91. 91.
    Mauser N, Hartschuh A. Tip-enhanced near-field optical microscopy. Chemical Society Reviews, 2014, 43(4): 1248–1262Google Scholar
  92. 92.
    Hartschuh A. Tip-enhanced near-field optical microscopy. Angewandte Chemie (International ed. in English), 2008, 47(43): 8178–8191Google Scholar
  93. 93.
    Neuman T, Alonso-González P, Garcia-Etxarri A, Schnell M, Hillenbrand R, Aizpurua J. Mapping the near fields of plasmonic nanoantennas by scattering-type scanning near-field optical microscopy. Laser & Photonics Reviews, 2015, 9(6): 637–649Google Scholar
  94. 94.
    Novotny L, Stranick S J. Near-field optical microscopy and spectroscopy with pointed probes. Annual Review of Physical Chemistry, 2006, 57(1): 303–331Google Scholar
  95. 95.
    Lucas M, Riedo E. Invited review article: combining scanning probe microscopy with optical spectroscopy for applications in biology and materials science. The Review of Scientific Instruments, 2012, 83(6): 061101Google Scholar
  96. 96.
    Hillenbrand R, Keilmann F. Complex optical constants on a subwavelength scale. Physical Review Letters, 2000, 85(14): 3029–3032Google Scholar
  97. 97.
    Yang T J, Lessard G A, Quake S R. An apertureless near-field microscope for fluorescence imaging. Applied Physics Letters, 2000, 76(3): 378–380Google Scholar
  98. 98.
    Labardi M, Tikhomirov O, Ascoli C, Allegrini M. Balanced homodyning for apertureless near-field optical imaging. The Review of Scientific Instruments, 2008, 79(3): 033709Google Scholar
  99. 99.
    Gomez L, Bachelot R, Bouhelier A, Wiederrecht G P, Chang S H, Gray S K, Hua F, Jeon S, Rogers J A, Castro M E, Blaize S, Stefanon I, Lerondel G, Royer P. Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches. Journal of the Optical Society of America. B, Optical Physics, 2006, 23(5): 823Google Scholar
  100. 100.
    Taubner T, Hillenbrand R, Keilmann F. Performance of visible and mid-infrared scattering-type near-field optical microscopes. Journal of Microscopy, 2003, 210(Pt 3): 311–314MathSciNetGoogle Scholar
  101. 101.
    Hillenbrand R, Knoll B, Keilmann F. Pure optical contrast in scattering-type scanning near-field microscopy. Journal of Microscopy, 2001, 202(Pt 1): 77–83MathSciNetGoogle Scholar
  102. 102.
    Raschke M B, Lienau C. Apertureless near-field optical microscopy: tip–sample coupling in elastic light scattering. Applied Physics Letters, 2003, 83(24): 5089–5091Google Scholar
  103. 103.
    Knoll B, Keilmann F. Near-field probing of vibrational absorption for chemical microscopy. Nature, 1999, 399(6732): 134–137Google Scholar
  104. 104.
    Knoll B, Keilmann F. Enhanced dielectric contrast in scatteringtype scanning near-field optical microscopy. Optics Communications, 2000, 182(4–6): 321–328Google Scholar
  105. 105.
    Hillenbrand R, Taubner T, Keilmann F. Phonon-enhanced light matter interaction at the nanometre scale. Nature, 2002, 418(6894): 159–162Google Scholar
  106. 106.
    Ocelic N, Huber A, Hillenbrand R. Pseudoheterodyne detection for background-free near-field spectroscopy. Applied Physics Letters, 2006, 89(10): 101124Google Scholar
  107. 107.
    Ocelic N. Quantitative near-field phonon-polariton spectroscopy. Dissertation for the Doctoral Degree. Munich: Technical University of Munich, 2007Google Scholar
  108. 108.
    Schnell M, Carney P S, Hillenbrand R. Synthetic optical holography for rapid nanoimaging. Nature Communications, 2014, 5: 3499Google Scholar
  109. 109.
    Deutsch B, Hillenbrand R, Novotny L. Near-field amplitude and phase recovery using phase-shifting interferometry. Optics Express, 2008, 16(2): 494–501Google Scholar
  110. 110.
    Huber A J, Keilmann F, Wittborn J, Aizpurua J, Hillenbrand R. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano Letters, 2008, 8(11): 3766–3770Google Scholar
  111. 111.
    O’Callahan B T, Lewis W E, Jones A C, Raschke M B. Spectral frustration and spatial coherence in thermal near-field spectro-scopy. Physical Review B: Condensed Matter and Materials Physics, 2014, 89(24): 245446Google Scholar
  112. 112.
    Babuty A, Joulain K, Chapuis P O, Greffet J J, De Wilde Y. Blackbody spectrum revisited in the near field. Physical Review Letters, 2013, 110(14): 146103Google Scholar
  113. 113.
    O’Callahan B T, Raschke M B. Laser heating of scanning probe tips for thermal near-field spectroscopy and imaging. APL Photonics, 2017, 2(2):021301Google Scholar
  114. 114.
    Schnell M, García-Etxarri A, Huber A J, Crozier K, Aizpurua J, Hillenbrand R. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nature Photonics, 2009, 3(5): 287–291Google Scholar
  115. 115.
    Jones A C, Olmon R L, Skrabalak S E, Wiley B J, Xia Y N, Raschke M B. Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires. Nano Letters, 2009, 9(7): 2553–2558Google Scholar
  116. 116.
    Taubner T, Keilmann F, Hillenbrand R. Nanomechanical resonance tuning and phase effects in optical near-field interaction. Nano Letters, 2004, 4(9): 1669–1672Google Scholar
  117. 117.
    Zhang L M, Andreev G O, Fei Z, McLeod A S, Dominguez G, Thiemens M, Castro-Neto A H, Basov D N, Fogler M M. Nearfield spectroscopy of silicon dioxide thin films. Physical Review B: Condensed Matter and Materials Physics, 2012, 85(7): 075419Google Scholar
  118. 118.
    Fei Z, Andreev G O, Bao W, Zhang L M, McLeod A S, Wang C, Stewart M K, Zhao Z, Dominguez G, Thiemens M, Fogler M M, Tauber M J, Castro-Neto A H, Lau C N, Keilmann F, Basov D N. Infrared nanoscopy of dirac plasmons at the graphene-SiO2 interface. Nano Letters, 2011, 11(11): 4701–4705Google Scholar
  119. 119.
    Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, García de Abajo F J, Hillenbrand R, Koppens F H. Optical nano-imaging of gate-tunable graphene plasmons. Nature, 2012, 487(7405): 77–81Google Scholar
  120. 120.
    Huth F, Chuvilin A, Schnell M, Amenabar I, Krutokhvostov R, Lopatin S, Hillenbrand R. Resonant antenna probes for tipenhanced infrared near-field microscopy. Nano Letters, 2013, 13 (3): 1065–1072Google Scholar
  121. 121.
    Xu X G, Tanur A E, Walker G C. Phase controlled homodyne infrared near-field microscopy and spectroscopy reveal inhomogeneity within and among individual boron nitride nanotubes. Journal of Physical Chemistry A, 2013, 117(16): 3348–3354Google Scholar
  122. 122.
    Fei Z, Rodin A S, Gannett W, Dai S, Regan W, Wagner M, Liu M K, McLeod A S, Dominguez G, Thiemens M, Castro Neto A H, Keilmann F, Zettl A, Hillenbrand R, Fogler M M, Basov D N. Electronic and plasmonic phenomena at graphene grain boundaries. Nature Nanotechnology, 2013, 8(11): 821–825Google Scholar
  123. 123.
    Berweger S, Nguyen D M, Muller E A, Bechtel H A, Perkins T T, Raschke M B. Nano-chemical infrared imaging of membrane proteins in lipid bilayers. Journal of the American Chemical Society, 2013, 135(49): 18292–18295Google Scholar
  124. 124.
    Xu X G, Gilburd L, Walker G C. Phase stabilized homodyne of infrared scattering type scanning near-field optical microscopy. Applied Physics Letters, 2014, 105(26): 263104Google Scholar
  125. 125.
    Yoxall E, Schnell M, Mastel S, Hillenbrand R. Magnitude and phase-resolved infrared vibrational nanospectroscopy with a swept quantum cascade laser. Optics Express, 2015, 23(10): 13358–13369Google Scholar
  126. 126.
    Amarie S, Ganz T, Keilmann F. Mid-infrared near-field spectroscopy. Optics Express, 2009, 17(24): 21794–21801Google Scholar
  127. 127.
    Amarie S, Keilmann F. Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy. Physical Review B: Condensed Matter and Materials Physics, 2011, 83 (4): 045404Google Scholar
  128. 128.
    Keilmann F, Amarie S. Mid-infrared frequency comb spanning an octave based on an Er fiber laser and difference-frequency generation. Journal of Infrared, Millimeter and Terahertz Waves, 2012, 33(5): 479–484Google Scholar
  129. 129.
    Amarie S, Zaslansky P, Kajihara Y, Griesshaber E, Schmahl WW, Keilmann F. Nano-FTIR chemical mapping of minerals in biological materials. Beilstein Journal of Nanotechnology, 2012, 3: 312–323Google Scholar
  130. 130.
    Huth F, Govyadinov A, Amarie S, Nuansing W, Keilmann F, Hillenbrand R. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Letters, 2012, 12(8): 3973–3978Google Scholar
  131. 131.
    Xu X G, Rang M, Craig I M, Raschke M B. Pushing the samplesize limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity. The Journal of Physical Chemistry Letters, 2012, 3(13): 1836–1841Google Scholar
  132. 132.
    Govyadinov A A, Amenabar I, Huth F, Carney P S, Hillenbrand R. Quantitative measurement of local infrared absorption and dielectric function with tip-enhanced near-field microscopy. The Journal of Physical Chemistry Letters, 2013, 4(9): 1526–1531Google Scholar
  133. 133.
    Amenabar I, Poly S, Nuansing W, Hubrich E H, Govyadinov A A, Huth F, Krutokhvostov R, Zhang L, Knez M, Heberle J, Bittner A M, Hillenbrand R. Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nature Communications, 2013, 4: 2890Google Scholar
  134. 134.
    McLeod A S, Kelly P, Goldflam M D, Gainsforth Z, Westphal A J, Dominguez G, Thiemens MH, Fogler MM, Basov D N. Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved optical constants. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(8): 085136Google Scholar
  135. 135.
    Khatib O, Wood J D, McLeod A S, Goldflam M D, Wagner M, Damhorst G L, Koepke J C, Doidge G P, Rangarajan A, Bashir R, Pop E, Lyding J W, Thiemens M H, Keilmann F, Basov D N. Graphene-based platform for infrared near-field nanospectroscopy of water and biological materials in an aqueous environment. ACS Nano, 2015, 9(8): 7968–7975Google Scholar
  136. 136.
    Amenabar I, Poly S, Goikoetxea M, Nuansing W, Lasch P, Hillenbrand R. Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy. Nature Communications, 2017, 8: 14402Google Scholar
  137. 137.
    Huth F, Schnell M, Wittborn J, Ocelic N, Hillenbrand R. Infraredspectroscopic nanoimaging with a thermal source. Nature Materials, 2011, 10(5): 352–356Google Scholar
  138. 138.
    O’Callahan B T, Lewis W E, Möbius S, Stanley J C, Muller E A, Raschke M B. Broadband infrared vibrational nano-spectroscopy using thermal blackbody radiation. Optics Express, 2015, 23(25): 32063–32074Google Scholar
  139. 139.
    Ikemoto Y, Ishikawa M, Nakashima S, Okamura H, Haruyama Y, Matsui S, Moriwaki T, Kinoshita T. Development of scattering near-field optical microspectroscopy apparatus using an infrared synchrotron radiation source. Optics Communications, 2012, 285 (8): 2212–2217Google Scholar
  140. 140.
    Hermann P, Hoehl A, Patoka P, Huth F, Rühl E, Ulm G. Near-field imaging and nano-Fourier-transform infrared spectroscopy using broadband synchrotron radiation. Optics Express, 2013, 21(3): 2913–2919Google Scholar
  141. 141.
    Bechtel H A, Muller E A, Olmon R L, Martin M C, Raschke M B. Ultrabroadband infrared nanospectroscopic imaging. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(20): 7191–7196Google Scholar
  142. 142.
    Peragut F, Brubach J B, Roy P, de Wilde Y. Infrared near-field imaging and spectroscopy based on thermal or synchrotron radiation. Applied Physics Letters, 2014, 104(25): 251118Google Scholar
  143. 143.
    Jones A C, Raschke M B. Thermal infrared near-field spectroscopy. Nano Letters, 2012, 12(3): 1475–1481Google Scholar
  144. 144.
    Jones A C, O’Callahan B T, Yang H U, Raschke M B. The thermal near-field: coherence, spectroscopy, heat-transfer, and optical forces. Progress in Surface Science, 2013, 88(4): 349–392Google Scholar
  145. 145.
    Alonso-González P, Albella P, Neubrech F, Huck C, Chen J, Golmar F, Casanova F, Hueso L E, Pucci A, Aizpurua J, Hillenbrand R. Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas. Physical Review Letters, 2013, 110(20): 203902Google Scholar
  146. 146.
    Walford J N, Porto J A, Carminati R, Greffet J J, Adam P M, Hudlet S, Bijeon J L, Stashkevich A, Royer P. Influence of tip modulation on image formation in scanning near-field optical microscopy. Journal of Applied Physics, 2001, 89(9): 5159–5169Google Scholar
  147. 147.
    Joulain K, Ben-Abdallah P, Chapuis P O, de Wilde Y, Babuty A, Henkel C. Strong tip–sample coupling in thermal radiation scanning tunneling microscopy. Journal of Quantitative Spectroscopy & Radiative Transfer, 2014, 136: 1–15Google Scholar
  148. 148.
    Jarzembski A, Park K. Finite dipole model for extreme near-field thermal radiation between a tip and planar SiC substrate. Journal of Quantitative Spectroscopy & Radiative Transfer, 2017, 191: 67–74Google Scholar
  149. 149.
    Cvitkovic A, Ocelic N, Hillenbrand R. Analytical model for quantitative prediction of material contrasts in scattering-type nearfield optical microscopy. Optics Express, 2007, 15(14): 8550–8565Google Scholar
  150. 150.
    Cvitkovic A, Ocelic N, Aizpurua J, Guckenberger R, Hillenbrand R. Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap. Physical Review Letters, 2006, 97(6): 060801Google Scholar
  151. 151.
    Renger J, Grafström S, Eng L M, Hillenbrand R. Resonant light scattering by near-field-induced phonon polaritons. Physical Review B: Condensed Matter and Materials Physics, 2005, 71 (7): 075410Google Scholar
  152. 152.
    Fikri R, Barchiesi D, H’Dhili F, Bachelot R, Vial A, Royer P. Modeling recent experiments of apertureless near-field optical microscopy using 2D finite element method. Optics Communications, 2003, 221(1–3): 13–22Google Scholar
  153. 153.
    Micic M, Klymyshyn N, Suh Y, Lu H. Finite element method simulation of the field distribution for AFM tip-enhanced surfaceenhanced Raman scanning microscopy. Journal of Physical Chemistry B, 2003, 107(7): 1574–1584Google Scholar
  154. 154.
    Brehm M, Schliesser A, Cajko F, Tsukerman I, Keilmann F. Antenna-mediated back-scattering efficiency in infrared near-field microscopy. Optics Express, 2008, 16(15): 11203–11215Google Scholar
  155. 155.
    Sukhov S V. Role of multipole moment of the probe in apertureless near-field optical microscopy. Ultramicroscopy, 2004, 101(2–4): 111–122Google Scholar
  156. 156.
    Hatano H, Kawata S. Applicability of deconvolution and nonlinear optimization for reconstructing optical images from near-field optical microscope images. Journal of Microscopy, 1999, 194(2–3): 230–234Google Scholar
  157. 157.
    Zhang Z M. Nano/microscale Heat Transfer, 5th ed. New York: McGraw Hill, 2007Google Scholar
  158. 158.
    Lee B J, Park K, Zhang Z M. Energy pathways in nanoscale thermal radiation. Applied Physics Letters, 2007, 91(15): 153101Google Scholar
  159. 159.
    Francoeur M, Basu S, Petersen S J. Electric and magnetic surface polariton mediated near-field radiative heat transfer between metamaterials made of silicon carbide particles. Optics Express, 2011, 19(20): 18774–18788Google Scholar
  160. 160.
    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature, 2012, 487(7405): 82–85Google Scholar
  161. 161.
    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012, 7(11): 699–712Google Scholar
  162. 162.
    Gowen A A, O’Donnell C P, Cullen P J, Downey G, Frias J M. Hyperspectral imaging–an emerging process analytical tool for food quality and safety control. Trends in Food Science & Technology, 2007, 18(12): 590–598Google Scholar
  163. 163.
    Lu G, Fei B. Medical hyperspectral imaging: a review. Journal of Biomedical Optics, 2014, 19(1): 010901Google Scholar
  164. 164.
    Ossikovski R, Nguyen Q, Picardi G. Simple model for the polarization effects in tip-enhanced Raman spectroscopy. Physical Review B: Condensed Matter and Materials Physics, 2007, 75(4): 045412Google Scholar
  165. 165.
    Wessel J. Surface-enhanced optical microscopy. Journal of the Optical Society of America. B, Optical Physics, 1985, 2(9): 1538Google Scholar
  166. 166.
    Stöckle R M, Suh Y D, Deckert V, Zenobi R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chemical Physics Letters, 2000, 318(1–3): 131–136Google Scholar
  167. 167.
    Hayazawa N, Inouye Y, Sekkat Z, Kawata S. Metallized tip amplification of near-field Raman scattering. Optics Communications, 2000, 183(1–4): 333–336Google Scholar
  168. 168.
    Anderson M S. Locally enhanced Raman spectroscopy with an atomic force microscope. Applied Physics Letters, 2000, 76(21): 3130–3132Google Scholar
  169. 169.
    Pettinger B, Picardi G, Schuster R, Ertl G. Surface enhanced Raman spectroscopy: towards single molecular spectroscopy. Electrochemistry, 2000, 68(12): 942–949Google Scholar
  170. 170.
    Bailo E, Deckert V. Tip-enhanced Raman scattering. Chemical Society Reviews, 2008, 37(5): 921–930Google Scholar
  171. 171.
    Yeo B S, Stadler J, Schmid T, Zenobi R, Zhang W. Tip-enhanced Raman Spectroscopy–its status, challenges and future directions. Chemical Physics Letters, 2009, 472(1–3): 1–13Google Scholar
  172. 172.
    Kumar N, Mignuzzi S, Su W, Roy D. Tip-enhanced Raman spectroscopy: principles and applications. EPJ Techniques and Instrumentation, 2015, 2(1): 9Google Scholar
  173. 173.
    Weber-Bargioni A, Schwartzberg A, Cornaglia M, Ismach A, Urban J J, Pang Y, Gordon R, Bokor J, Salmeron M B, Ogletree D F, Ashby P, Cabrini S, Schuck P J. Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes. Nano Letters, 2011, 11(3): 1201–1207Google Scholar
  174. 174.
    Wickramasinghe H K, Chaigneau M, Yasukuni R, Picardi G, Ossikovski R. Billion-fold increase in tip-enhanced Raman signal. ACS Nano, 2014, 8(4): 3421–3426Google Scholar
  175. 175.
    Sackrow M, Stanciu C, Lieb M A, Meixner A J. Imaging nanometre-sized hot spots on smooth AU films with highresolution tip-enhanced luminescence and Raman near-field optical microscopy. Chemphyschem, 2008, 9(2): 316–320Google Scholar
  176. 176.
    Tarun A, Hayazawa N, Motohashi M, Kawata S. Highly efficient tip-enhanced Raman spectroscopy and microscopy of strained silicon. Review of Scientific Instruments, 2008, 79(1): 013706Google Scholar
  177. 177.
    Saito Y, Hayazawa N, Kataura H, Murakami T, Tsukagoshi K, Inouye Y, Kawata S. Polarization measurements in tip-enhanced Raman spectroscopy applied to single-walled carbon nanotubes. Chemical Physics Letters, 2005, 410(1–3): 136–141Google Scholar
  178. 178.
    Neugebauer U, Rösch P, Schmitt M, Popp J, Julien C, Rasmussen A, Budich C, Deckert V. On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy. Chemphyschem, 2006, 7(7): 1428–1430Google Scholar
  179. 179.
    Böhme R, Richter M, Cialla D, Rösch P, Deckert V, Popp J. Towards a specific characterisation of components on a cell surface-combined TERS-investigations of lipids and human cells. Journal of Raman Spectroscopy: JRS, 2009, 40(10): 1452–1457Google Scholar
  180. 180.
    Bailo E, Deckert V. Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method. Angewandte Chemie (International ed. in English), 2008, 47(9): 1658–1661Google Scholar
  181. 181.
    Deckert-Gaudig T, Bailo E, Deckert V. Tip-enhanced Raman scattering (TERS) of oxidised glutathione on an ultraflat gold nanoplate. Physical chemistry chemical physics: PCCP, 2009, 11 (34): 7360–7362Google Scholar
  182. 182.
    Yeo B S, Amstad E, Schmid T, Stadler J, Zenobi R. Nanoscale probing of a polymer-blend thin film with tip-enhanced Raman spectroscopy. Small, 2009, 5(8): 952–960Google Scholar
  183. 183.
    van Schrojenstein Lantman E M, Deckert-Gaudig T, Mank A J G, Deckert V, Weckhuysen B M. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nature Nanotechnology, 2012, 7(9): 583–586Google Scholar
  184. 184.
    Wang X, Zhang D, Braun K, Egelhaaf H J, Brabec C J, Meixner A J. High-resolution spectroscopic mapping of the chemical contrast from nanometer domains in P3HT: PCBM organic blend films for solar-cell applications. Advanced Functional Materials, 2010, 20 (3): 492–499Google Scholar
  185. 185.
    Lee N, Hartschuh R D, Mehtani D, Kisliuk A, Maguire J F, Green M, Foster M D, Sokolov A P. High contrast scanning nano-Raman spectroscopy of silicon. Journal of Raman Spectroscopy: JRS, 2007, 38(6): 789–796Google Scholar
  186. 186.
    Hayazawa N, Yano T, Watanabe H, Inouye Y, Kawata S. Detection of an individual single-wall carbon nanotube by tip-enhanced nearfield Raman spectroscopy. Chemical Physics Letters, 2003, 376(1–2): 174–180Google Scholar
  187. 187.
    Hoffmann G G, de With G, Loos J. Micro-Raman and tip-enhanced Raman spectroscopy of carbon allotropes. Macromolecular Symposia, 2008, 265(1): 1–11Google Scholar
  188. 188.
    Neacsu C C, Dreyer J, Behr N, Raschke M B. Scanning-probe Raman spectroscopy with single-molecule sensitivity. Physical Review B: Condensed Matter and Materials Physics, 2007, 75(23): 193406Google Scholar
  189. 189.
    Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L, Hou J G. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature, 2013, 498(7452): 82–86Google Scholar
  190. 190.
    Yeo B S, Zhang W, Vannier C, Zenobi R. Enhancement of Raman signals with silver-coated tips. Applied Spectroscopy, 2006, 60 (10): 1142–1147Google Scholar
  191. 191.
    Cui X, Zhang W, Yeo B S, Zenobi R, Hafner C, Erni D. Tuning the resonance frequency of Ag-coated dielectric tips. Optics Express, 2007, 15(13): 8309–8316Google Scholar
  192. 192.
    Ichimura T, Watanabe H, Morita Y, Verma P, Kawata S, Inouye Y. Temporal fluctuation of tip-enhanced Raman spectra of adenine molecules temporal fluctuation of tip-enhanced Raman spectra of adenine molecules. Journal of Physical Chemistry C, 2007, 111 (26): 9460–9464Google Scholar
  193. 193.
    Hayazawa N, Yano T A, Kawata S. Highly reproducible tipenhanced Raman scattering using an oxidized and metallized silicon cantilever tip as a tool for everyone. Journal of Raman Spectroscopy: JRS, 2012, 43(9): 1177–1182Google Scholar
  194. 194.
    Jahng J, Tork Ladani F, Khan R M, Potma E O. Photo-induced force for spectroscopic imaging at the nanoscale. Proceedings of the Society for Photo-Instrumentation Engineers, 2016, 9764: 97641JGoogle Scholar
  195. 195.
    Nowak D, Morrison W, Wickramasinghe H K, Jahng J, Potma E, Wan L, Ruiz R, Albrecht T R, Schmidt K, Frommer J, Sanders D P, Park S. Nanoscale chemical imaging by photoinduced force microscopy. Science Advances, 2016, 2(3): e1501571Google Scholar
  196. 196.
    Rajapaksa I, Uenal K, Wickramasinghe H K. Image force microscopy of molecular resonance: a microscope principle. Applied Physics Letters, 2010, 97(7): 073121Google Scholar
  197. 197.
    Rajapaksa I, Kumar Wickramasinghe H. Raman spectroscopy and microscopy based on mechanical force detection. Applied Physics Letters, 2011, 99(16): 161103Google Scholar
  198. 198.
    Huang F, Tamma V A, Mardy Z, Burdett J, Wickramasinghe H K. Imaging nanoscale electromagnetic near-field distributions using optical forces. Scientific Reports, 2015, 5(1): 10610Google Scholar
  199. 199.
    Jahng J, Fishman D A, Park S, Nowak D B, Morrison W A, Wickramasinghe H K, Potma E O. Linear and nonlinear optical spectroscopy at the nanoscale with photoinduced force microscopy. Accounts of Chemical Research, 2015, 48(10): 2671–2679Google Scholar
  200. 200.
    Jahng J, Brocious J, Fishman D A, Yampolsky S, Nowak D, Huang F, Apkarian V A, Wickramasinghe H K, Potma E O. Ultrafast pump-probe force microscopy with nanoscale resolution. Applied Physics Letters, 2015, 106(8): 083113Google Scholar
  201. 201.
    Murdick R A, Morrison W, Nowak D, Albrecht T R, Jahng J, Park S. Photoinduced force microscopy: a technique for hyperspectral nanochemical mapping. Japanese Journal of Applied Physics, 2017, 56(8): 08LA04Google Scholar
  202. 202.
    Jahng J, Brocious J, Fishman D A, Huang F, Li X, Tamma V A, Wickramasinghe H K, Potma E O. Gradient and scattering forces in photoinduced force microscopy. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(15): 155417Google Scholar
  203. 203.
    Jahng J, Ladani F T, Khan R M, Li X, Lee E S, Potma E O. Visualizing surface plasmon polaritons by their gradient force. Optics Letters, 2015, 40(21): 5058–5061Google Scholar
  204. 204.
    Tumkur T U, Yang X, Cerjan B, Halas N J, Nordlander P, Thomann I. Photoinduced force mapping of plasmonic nanostructures. Nano Letters, 2016, 16(12): 7942–7949Google Scholar
  205. 205.
    Tamma V A, Huang F, Nowak D, Kumar Wickramasinghe H. Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain. Applied Physics Letters, 2016, 108(23): 233107Google Scholar
  206. 206.
    Ambrosio A, Devlin R C, Capasso F, Wilson W L. Observation of nanoscale refractive index contrast via photoinduced force microscopy. ACS Photonics, 2017, 4(4): 846–851Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations