Skip to main content
Log in

Largely reduced cross-plane thermal conductivity of nanoporous In0.1Ga0.9N thin films directly grown by metal organic chemical vapor deposition

  • Research Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

In recent year, nanoporous Si thin films have been widely studied for their potential applications in thermoelectrics, in which high thermoelectric performance can be obtained by combining both the dramatically reduced lattice thermal conductivity and bulk-like electrical properties. Along this line, a high thermoelectric figure of merit (ZT) is also anticipated for other nanoporous thin films, whose bulk counterparts possess superior electrical properties but also high lattice thermal conductivities. Numerous thermoelectric studies have been carried out on Si-based nanoporous thin films, whereas cost-effective nitrides and oxides are not systematically studied for similar thermoelectric benefits. In this work, the cross-plane thermal conductivities of nanoporous In0.1Ga0.9N thin films with varied porous patterns were measured with the time-domain thermoreflectance technique. These alloys are suggested to have better electrical properties than conventional Si x Ge1–x alloys; however, a high ZT is hindered by their intrinsically high lattice thermal conductivity, which can be addressed by introducing nanopores to scatter phonons. In contrast to previous studies using dry-etched nanopores with amorphous pore edges, the measured nanoporous thin films of this work are directly grown on a patterned sapphire substrate to minimize the structural damage by dry etching. This removes the uncertainty in the phonon transport analysis due to amorphous pore edges. Based on the measurement results, remarkable phonon size effects can be found for a thin film with periodic 300-nm-diameter pores of different patterns. This indicates that a significant amount of heat inside these alloys is still carried by phonons with ~300 nm or longer mean free paths. Our studies provide important guidance for ZT enhancement in alloys of nitrides and similar oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson W, Piner E L. GaN HEMT Technology. Berlin: Springer Berlin Heidelberg, 2012

    Book  Google Scholar 

  2. Wu Y R, Singh J. Transient study of self-heating effects in AlGaN/GaN HFETs: consequence of carrier velocities, temperature, and device performance. Journal of Applied Physics, 2007, 101(11): 113712

    Article  Google Scholar 

  3. Rosker M, Bozada C, Dietrich H, Hung A, Via D, Binari S, Vivierios E, Cohen E, Hodiak J. The DARPA wide band gap semiconductors for RF applications (WBGS-RF) program: Phase II results. In: CS MANTECH Conference. Tampa, Florida, USA, 2009

    Google Scholar 

  4. Lee H, Agonafer D D, Won Y, Houshmand F, Gorle C, Asheghi M, Goodson K. Thermal modeling of extreme heat flux microchannel coolers for GaN-on-SiC semiconductor devices. Journal of Electronic Packaging, 2016, 138(1): 010907

    Article  Google Scholar 

  5. Calame J P, Myers R E, Binari S C, Wood F N, Garven M. Experimental investigation of microchannel coolers for the high heat flux thermal management of GaN-on-SiC semiconductor devices. International Journal of Heat and Mass Transfer, 2007, 50(23–24): 4767–4779

    Article  Google Scholar 

  6. Yan Z, Liu G, Khan J M, Balandin A A. Graphene quilts for thermal management of high-power GaN transistors. Nature Communications, 2012, 3(3): 199–202

    Google Scholar 

  7. Tsurumi N, Ueno H, Murata T, Ishida H, Uemoto Y, Ueda T, Inoue K, Tanaka T. AlN passivation over AlGaN/GaN HFETs for surface heat spreading. IEEE Transactions on Electron Devices, 2010, 57 (5): 980–985

    Article  Google Scholar 

  8. Liu W, Balandin A A. Thermoelectric effects in wurtzite GaN and AlxGa1-xN alloys. Journal of Applied Physics, 2005, 97(12): 123705

    Article  Google Scholar 

  9. Pantha B N, Dahal R, Li J, Lin J Y, Jiang H X, Pomrenke G. Thermoelectric properties of In0.3Ga0.7N alloys. Journal of Electronic Materials, 2009, 38(7): 1132–1135

    Article  Google Scholar 

  10. Sztein A, Bowers J E, DenBaars S P, Nakamura S. Polarization field engineering of GaN/AlN/AlGaN superlattices for enhanced thermoelectric properties. Applied Physics Letters, 2014, 104(4): 042106

    Article  Google Scholar 

  11. Sztein A, Haberstroh J, Bowers J E, Denbaars S P, Nakamura S. Calculated thermoelectric properties of InxGa1–xN, InxAl1–xN, and AlxGa1–xN. Journal of Applied Physics, 2013, 113(18): 183707

    Article  Google Scholar 

  12. Hurwitz E N, Asghar M, Melton A, Kucukgok B, Su L, Orocz M, Jamil M, Lu N, Ferguson I T. Thermopower study of GaN-based materials for next-generation thermoelectric devices and applications. Journal of Electronic Materials, 2011, 40(5): 513–517

    Article  Google Scholar 

  13. Goldsmid H J. Thermoelectric Refrigeration. New York: Plenum Press, 1964

    Book  Google Scholar 

  14. Pantha B N, Dahal R, Li J, Lin J Y, Jiang H X, Pomrenke G. Thermoelectric properties of InxGa1–xN alloys. Applied Physics Letters, 2008, 92(4): 042112

    Article  Google Scholar 

  15. Sztein A, Ohta H, Bowers J E, DenBaars S P, Nakamura S. High temperature thermoelectric properties of optimized InGaN. Journal of Applied Physics, 2011, 110(12): 123709

    Article  Google Scholar 

  16. Cahill D G, Braun P V, Chen G, Clarke D R, Fan S, Goodson K E, Keblinski P, King W P, Mahan G D, Majumdar A, Maris H J, Phillpot S R, Pop E, Shi L. Nanoscale thermal transport. II. 2003–2012. Applied Physics Reviews, 2014, 1(1): 011305

    Article  Google Scholar 

  17. Marconnet A M, Asheghi M, Goodson K E. From the casimir limit to phononic crystals: 20 years of phonon transport studies using silicon-on-insulator technology. Journal of Heat Transfer, 2013, 135 (6): 061601–1/10

    Article  Google Scholar 

  18. Lim J, Wang H T, Tang J, Andrews S C, So H, Lee J, Lee D H, Russell T P, Yang P. Simultaneous thermoelectric property measurement and incoherent phonon transport in holey silicon. ACS Nano, 2016, 10(1): 124–132

    Article  Google Scholar 

  19. Yu J K, Mitrovic S, Tham D, Varghese J, Heath J R. Reduction of thermal conductivity in phononic nanomesh structures. Nature Nanotechnology, 2010, 5(10): 718–721

    Article  Google Scholar 

  20. Tang J, Wang H T, Lee D H, Fardy M, Huo Z, Russell T P, Yang P. Holey silicon as an efficient thermoelectric material. Nano Letters, 2010, 10(10): 4279–4283

    Article  Google Scholar 

  21. Chen G. Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons. Oxford: Oxford University Press, 2005

    Google Scholar 

  22. Maldovan M. Narrow low-frequency spectrum and heat management by thermocrystals. Physical Review Letters, 2013, 110(2): 025902

    Article  Google Scholar 

  23. Song D, Chen G. Thermal conductivity of periodic microporous silicon films. Applied Physics Letters, 2004, 84(5): 687–689

    Article  Google Scholar 

  24. He Y, Donadio D, Lee J H, Grossman J C, Galli G. Thermal transport in nanoporous silicon: interplay between disorder at mesoscopic and atomic scales. ACS Nano, 2011, 5(3): 1839–1844

    Article  Google Scholar 

  25. Ravichandran N K, Minnich A J. Coherent and incoherent thermal transport in nanomeshes. Physical Review B: Condensed Matter and Materials Physics, 2014, 89(20): 205432

    Article  Google Scholar 

  26. Hopkins P E, Reinke C M, Su M F, Olsson R H III, Shaner E A, Leseman Z C, Serrano J R, Phinney L M, El-Kady I. Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning. Nano Letters, 2011, 11(1): 107–112

    Article  Google Scholar 

  27. Lee J, Lim J, Yang P. Ballistic phonon transport in holey silicon. Nano Letters, 2015, 15(5): 3273–3279

    Article  Google Scholar 

  28. Tong T, Fu D, Levander A, Schaff W, Pantha B, Lu N, Liu B, Ferguson I, Zhang R, Lin J, Jiang H X, Wu J, Cahill D G. Suppression of thermal conductivity in InxGa1–xN alloys by nanometer-scale disorder. Applied Physics Letters, 2013, 102(12): 121906

    Article  Google Scholar 

  29. Hsiao T K, Chang H K, Liou S C, Chu M W, Lee S C, Chang C W. Observation of room-temperature ballistic thermal conduction persisting over 8.3 mm in SiGe nanowires. Nature Nanotechnology, 2013, 8(7): 534–538

    Article  Google Scholar 

  30. Hao Q, Xu D, Zhao H. Systematic studies of periodically nanoporous Si films for thermoelectric applications. MRS Proceedings, 2015, 1779, 27–32

    Article  Google Scholar 

  31. Kim B, Nguyen J, Clews P J, Reinke CM, Goettler D, Leseman Z C, El-Kady I, Olsson R. Thermal conductivity manipulation in single crystal silicon via lithographycally defined phononic crystals micro electro mechanical systems (MEMS). In: 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), 2012, 176–179

    Chapter  Google Scholar 

  32. Marconnet A M, Kodama T, Asheghi M, Goodson K E. Phonon conduction in periodically porous silicon nanobridges. Nanoscale and Microscale Thermophysical Engineering, 2012, 16(4): 199–219

    Article  Google Scholar 

  33. Nomura M, Nakagawa J, Sawano K, Maire J, Volz S. Thermal conduction in Si and SiGe phononic crystals explained by phonon mean free path spectrum. Applied Physics Letters, 2016, 109(17): 173104

    Article  Google Scholar 

  34. Alaie S, Goettler D F, Su M, Leseman Z C, Reinke C M, El-Kady I. Thermal transport in phononic crystals and the observation of coherent phonon scattering at room temperature. Nature Communications, 2015, 6: 7228

    Article  Google Scholar 

  35. Jain A, Yu Y J, McGaughey A J. Phonon transport in periodic silicon nanoporous films with feature sizes greater than 100 nm. Physical Review B: Condensed Matter and Materials Physics, 2013, 87(19): 195301

    Article  Google Scholar 

  36. Choi K, Arita M, Arakawa Y. Selective-area growth of thin GaN nanowires by MOCVD. Journal of Crystal Growth, 2012, 357: 58–61

    Article  Google Scholar 

  37. Cahill D G. Analysis of heat flow in layered structures for timedomain thermoreflectance. Review of Scientific Instruments, 2004, 75(12): 5119–5122

    Article  Google Scholar 

  38. Krukowski S, Witek A, Adamczyk J, Jun J, Bockowski M, Grzegory I, Lucznik B, Nowak G, Wróblewski M, Presz A, Gierlotka S, Stelmach S, Palosz B, Porowski S, Zinn P. Thermal properties of indium nitride. Journal of Physics and Chemistry of Solids, 1998, 59(3): 289–295

    Article  Google Scholar 

  39. Leitner J, Strejc A, Sedmidubský D, Růžička K. High temperature enthalpy and heat capacity of GaN. Thermochimica Acta, 2003, 401 (2): 169–173

    Article  Google Scholar 

  40. Oh D W, Ravichandran J, Liang C W, Siemons W, Jalan B, Brooks C M, Huijben M, Schlom D G, Stemmer S, Martin L W, Majumdar A, Ramesh R, Cahill D G. Thermal conductivity as a metric for the crystalline quality of SrTiO3 epitaxial layers. Applied Physics Letters, 2011, 98(22): 221904

    Article  Google Scholar 

  41. Zhu J, Zhu Y, Wu X, Song H, Zhang Y, Wang X. Structure-thermal property correlation of aligned silicon dioxide nanorod arrays. Applied Physics Letters, 2016, 108(23): 231903

    Article  Google Scholar 

  42. Majumdar A. Microscale heat conduction in dielectric thin films. Journal of Heat Transfer, 1993, 115(1): 7–16

    Article  Google Scholar 

  43. Jeong C, Datta S, Lundstrom M. Thermal conductivity of bulk and thin-film silicon: a Landauer approach. Journal of Applied Physics, 2012, 111(9): 093708

    Article  Google Scholar 

  44. Hua Y C, Cao B Y. Cross-plane heat conduction in nanoporous silicon thin films by phonon Boltzmann transport equation and Monte Carlo simulations. Applied Thermal Engineering, 2017, 111: 1401–1408

    Article  Google Scholar 

  45. Hao Q, Xiao Y, Zhao H. Characteristic length of phonon transport within periodic nanoporous thin films and two-dimensional materials. Journal of Applied Physics, 2016, 120(6): 065101

    Article  Google Scholar 

  46. Liu W, Balandin A A. Thermal conduction in AlxGa1–xN alloys and thin films. Journal of Applied Physics, 2005, 97(7): 073710

    Article  Google Scholar 

  47. Dames C, Chen G. Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires. Journal of Applied Physics, 2004, 95(2): 682–693

    Article  Google Scholar 

  48. Dames C, Chen G. Thermal conductivity of nanostructured thermoelectric materials. In: Rowe D M ed. Thermoelectrics Handbook: Macro to Nano. Boca Raton, USA: CRC Press 2005, 42:1–16

    Google Scholar 

  49. Toberer E S, Zevalkink A, Snyder G J. Phonon engineering through crystal chemistry. Journal of Materials Chemistry, 2011, 21(40): 15843–15852

    Article  Google Scholar 

  50. Klemens P G. Theory of thermal conductivity in solids. In: Tye R P ed. Thermal Conductivity. London: Academic Press, 1969, 1–68

  51. Roufosse M, Klemens P G. Thermal conductivity of complex dielectric crystals. Physical Review B: Condensed Matter and Materials Physics, 1973, 7(12): 5379–5386

    Article  Google Scholar 

  52. Julian C L. Theory of heat conduction in rare-gas crystals. Physical Review, 1965, 137(1A): A128–A137

    Article  MathSciNet  Google Scholar 

  53. Slack G A, Galginaitis S. Thermal conductivity and phonon scattering by magnetic impurities in CdTe. Physical Review, 1964, 133(1A): A253–A268

    Article  Google Scholar 

  54. Leibfried G, Schloemann E. Thermal conductivity of dielectric solids by a variational technique. Nachr Akad Wiss Goettingen, Math-Phys Kl, 2A. Math-Phys-Chem Abt, 1954, 23: 1366–1370

    Google Scholar 

  55. Freedman J P, Leach J H, Preble E A, Sitar Z, Davis R F, Malen J A. Universal phonon mean free path spectra in crystalline semiconductors at high temperature. Scientific Reports, 2013, 3(1): 2963

    Article  Google Scholar 

  56. Yang F, Dames C. Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures. Physical Review B: Condensed Matter and Materials Physics, 2013, 87(3): 035437

    Article  Google Scholar 

  57. Lindsay L, Broido D, Reinecke T. Thermal conductivity and large isotope effect in GaN from first principles. Physical Review Letters, 2012, 109(9): 095901

    Article  Google Scholar 

  58. Mion C, Muth J, Preble E, Hanser D. Accurate dependence of gallium nitride thermal conductivity on dislocation density. Applied Physics Letters, 2006, 89(9): 092123

    Article  Google Scholar 

  59. Tamura S I. Isotope scattering of dispersive phonons in Ge. Physical Review B: Condensed Matter and Materials Physics, 1983, 27(2): 858–866

    Article  Google Scholar 

  60. Ziman J M. Electrons and Phonons: the Theory of Transport Phenomena in Solids. Oxford: Oxford University Press, 2001

    Book  MATH  Google Scholar 

  61. Klemens P G. The scattering of low-frequency lattice waves by static imperfections. Proceedings of the Physical Society. Section A, 1955, 68(12): 1113–1128

    Article  MATH  Google Scholar 

  62. Wright A. Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN. Journal of Applied Physics, 1997, 82(6): 2833–2839

    Article  Google Scholar 

  63. Pantha B, Dahal R, Li J, Lin J, Jiang H, Pomrenke G. Thermoelectric properties of InxGa1–xN alloys. Applied Physics Letters, 2008, 92(4): 042112

    Article  Google Scholar 

  64. Regner K T, Sellan D P, Su Z, Amon C H, McGaughey A J, Malen J A. Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance. Nature Communications, 2013, 4: 1640

    Article  Google Scholar 

  65. Koh Y K, Cahill D G. Frequency dependence of the thermal conductivity of semiconductor alloys. Physical Review B: Condensed Matter and Materials Physics, 2007, 76(7): 075207

    Article  Google Scholar 

  66. Kucukgok B, Wu X, Wang X, Liu Z, Ferguson I T, Lu N. The structural properties of InGaN alloys and the interdependence on the thermoelectric behavior. AIP Advances, 2016, 6(2): 025305

    Article  Google Scholar 

  67. Mingo N, Hauser D, Kobayashi N, Plissonnier M, Shakouri A. “Nanoparticle-in-Alloy” approach to efficient thermoelectrics: silicides in SiGe. Nano Letters, 2009, 9(2): 711–715

    Article  Google Scholar 

  68. Koh Y K, Singer S L, Kim W, Zide J M O, Lu H, Cahill D G, Majumdar A, Gossard A C. Comparison of the 3ω method and timedomain thermoreflectance for measurements of the cross-plane thermal conductivity of epitaxial semiconductors. Journal of Applied Physics, 2009, 105(5): 054303

    Article  Google Scholar 

  69. Jeżowski A, Danilchenko B, Boćkowski M, Grzegory I, Krukowski S, Suski T, Paszkiewicz T. Thermal conductivity of GaN crystals in 4.2–300K range. Solid State Communications, 2003, 128(2–3): 69–73

    Article  Google Scholar 

  70. Jung K, Cho M, Zhou M. Strain dependence of thermal conductivity of [0001]-oriented GaN nanowires. Applied Physics Letters, 2011, 98(4): 041909

    Article  Google Scholar 

  71. Hao Q, Zhao H, Xiao Y. Multi-length scale thermal simulations of GaN-on-SiC high electron mobility transistors. In: Zhang Y, He Y-L ed. Multiscale Thermal Transport in Energy Systems. Hauppauge. New York: Nova Science Publishers, 2016

  72. Han Y J. Intrinsic thermal-resistive process of crystals: umklapp processes at low and high temperatures. Physical Review B: Condensed Matter and Materials Physics, 1996, 54(13): 8977–8980

    Article  Google Scholar 

  73. Dubey K, Misho R. Three-phonon scattering relaxation rate and phonon conductivity. Application to Mg2Ge. Physica Status Solidi. B, Basic Research, 1977, 84(1): 69–81

    Article  Google Scholar 

  74. Joshi Y, Verma G. Analysis of phonon conductivity: application to Si. Physical Review B: Condensed Matter and Materials Physics, 1970, 1(2): 750–755

    Article  Google Scholar 

  75. Ohta H, Kim S, Mune Y, Mizoguchi T, Nomura K, Ohta S, Nomura T, Nakanishi Y, Ikuhara Y, Hirano M, Hosono H, Koumoto K. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nature Materials, 2007, 6(2): 129–134

    Article  Google Scholar 

Download references

Acknowledgements

This material is based on research sponsored by Defense Advanced Research Agency (DARPA) under agreement number FA8650-15-1-7523 and US Air Force Office of Scientific Research under award number FA9550-16-1-0025. The US Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of Air Force Research Laboratory (AFRL) and the DARPA or the US Government. X.W.W., J.Z., and X.J.W. would like to thank the supports from the National Science Foundation (NSF) through the University of Minnesota MRSEC under Award Number DMR-1420013 and from the Legislative-Citizen Commission on Minnesota Resources (LCCMR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Hao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, D., Wang, Q., Wu, X. et al. Largely reduced cross-plane thermal conductivity of nanoporous In0.1Ga0.9N thin films directly grown by metal organic chemical vapor deposition. Front. Energy 12, 127–136 (2018). https://doi.org/10.1007/s11708-018-0519-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-018-0519-5

Keywords

Navigation