Frontiers in Energy

, Volume 12, Issue 1, pp 5–21 | Cite as

Near-field radiative thermoelectric energy converters: a review

  • Eric Tervo
  • Elham Bagherisereshki
  • Zhuomin Zhang
Review Article


Radiative thermoelectric energy converters, which include thermophotovoltaic cells, thermoradiative cells, electroluminescent refrigerators, and negative electroluminescent refrigerators, are semiconductor p-n devices that either generate electricity or extract heat from a cold body while exchanging thermal radiation with their surroundings. If this exchange occurs at micro or nanoscale distances, power densities can be greatly enhanced and near-field radiation effects may improve performance. This review covers the fundamentals of near-field thermal radiation, photon entropy, and nonequilibrium effects in semiconductor diodes that underpin device operation. The development and state of the art of these near-field converters are discussed in detail, and remaining challenges and opportunities for progress are identified.


energy conversion systems luminescent refrigeration near-field radiation thermophotovoltaic thermoradiative cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (Grant No. DESC0018369). This material is also based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. (DGE-1650044). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding agencies.


  1. 1.
    Wernsman B, Mahorter R G, Siergiej R, Link S D, Wehrer R J, Belanger S J, Fourspring P, Murray S, Newman F, Taylor D, Rahmlow T. Advanced thermophotovoltaic devices for space nuclear power systems. AIP Conference Proceedings, 2005, 746 (1): 1441–1448Google Scholar
  2. 2.
    Santhanam P, Gray D J, Ram R J. Thermoelectrically pumped light-emitting diodes operating above unity efficiency. Physical Review Letters, 2012, 108(9): 097403Google Scholar
  3. 3.
    Green M A. Solar Cells: Operating Principles, Technology and System Applications. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1982Google Scholar
  4. 4.
    Wedlock B D. Thermo-photo-voltaic energy conversion. Proceedings of the IEEE, 1963, 51(5): 694–698Google Scholar
  5. 5.
    Bauer T. Thermophotovoltaics Basic Principles and Critical Aspects of System Design. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011Google Scholar
  6. 6.
    Strandberg R. Theoretical efficiency limits for thermoradiative energy conversion. Journal of Applied Physics, 2015, 117(5): 055105Google Scholar
  7. 7.
    Tauc J. The share of thermal energy taken from the surroundings in the electro-luminescent energy radiated from a p-n junction. Cechoslovackij fiziceskij zurnal, 1957, 7(3): 275–276Google Scholar
  8. 8.
    Berdahl P. Radiant refrigeration by semiconductor diodes. Journal of Applied Physics, 1985, 58(3): 1369–1374Google Scholar
  9. 9.
    Planck M. The Theory of Heat Radiation. Philadelphia, PA: P. Blakiston’s Son & Co, 1914MATHGoogle Scholar
  10. 10.
    Polder D, Van Hove M. Theory of radiative heat transfer between closely spaced bodies. Physical Review B: Condensed Matter and Materials Physics, 1971, 4(10): 3303–3314Google Scholar
  11. 11.
    Pendry J B. Radiative exchange of heat between nanostructures. Journal of Physics Condensed Matter, 1999, 11(35): 6621–6633Google Scholar
  12. 12.
    Joulain K, Mulet J P, Marquier F, Carminati R, Greffet J J. Surface electromagnetic waves thermally excited: radiative heat transfer, coherence properties and Casimir forces revisited in the near field. Surface Science Reports, 2005, 57(3–4): 59–112Google Scholar
  13. 13.
    Basu S, Zhang Z M, Fu C J. Review of near-field thermal radiation and its application to energy conversion. International Journal of Energy Research, 2009, 33(13): 1203–1232Google Scholar
  14. 14.
    Zhang Z M. Nano/microscale Heat Transfer. New York: McGraw- Hill, 2007Google Scholar
  15. 15.
    Biehs S A, Ben-Abdallah P, Rosa F. Nanoscale radiative heat transfer and its applications. In: Morozhenko V, eds. Infrared Radiation. London: InTech, 2012, 1–26Google Scholar
  16. 16.
    Reid M T H, Rodriguez A W, Johnson S G. Fluctuation-induced phenomena in nanoscale systems: harnessing the power of noise. Proceedings of the IEEE, 2013, 101(2): 531–545Google Scholar
  17. 17.
    Song B, Fiorino A, Meyhofer E, Reddy P. Near-field radiative thermal transport: from theory to experiment. AIP Advances, 2015, 5(5): 053503Google Scholar
  18. 18.
    Liu X, Wang L, Zhang Z M. Near-field thermal radiation: recent progress and outlook. Nanoscale and Microscale Thermophysical Engineering, 2015, 19(2): 98–126Google Scholar
  19. 19.
    Francoeur M, Pinar Mengüç M. Role of fluctuational electrodynamics in near-field radiative heat transfer. Journal of Quantitative Spectroscopy & Radiative Transfer, 2008, 109(2): 280–293Google Scholar
  20. 20.
    Hu L, Narayanaswamy A, Chen X, Chen G. Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law. Applied Physics Letters, 2008, 92(13): 133106Google Scholar
  21. 21.
    Rousseau E, Siria A, Jourdan G, Volz S, Comin F, Chevrier J, Greffet J J. Radiative heat transfer at the nanoscale. Nature Photonics, 2009, 3(9): 514–517Google Scholar
  22. 22.
    St-Gelais R, Guha B, Zhu L, Fan S, Lipson M. Demonstration of strong near-field radiative heat transfer between integrated nanostructures. Nano Letters, 2014, 14(12): 6971–6975Google Scholar
  23. 23.
    Kim K, Song B, Fernández-Hurtado V, Lee W, Jeong W, Cui L, Thompson D, Feist J, Reid M T H, García-Vidal F J, Cuevas J C, Meyhofer E, Reddy P. Radiative heat transfer in the extreme near field. Nature, 2015, 528(7582): 387–391Google Scholar
  24. 24.
    St-Gelais R, Zhu L, Fan S, Lipson M. Near-field radiative heat transfer between parallel structures in the deep subwavelength regime. Nature Nanotechnology, 2016, 11(6): 515–519Google Scholar
  25. 25.
    Shchegrov A V, Joulain K, Carminati R, Greffet J J. Near-field spectral effects due to electromagnetic surface excitations. Physical Review Letters, 2000, 85(7): 1548–1551Google Scholar
  26. 26.
    Howell J R, Menguc M P, Siegel R. Thermal Radiation Heat Transfer. Boca Raton: CRC press, 2010Google Scholar
  27. 27.
    Rytov S, Kravtsov Y A, Tatarskii V. Priniciples of Statistical Radiophysics: Elements of Random Fields. Berlin: Springer, 1989MATHGoogle Scholar
  28. 28.
    Francoeur M, Pinar Mengüç M, Vaillon R. Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method. Journal of Quantitative Spectroscopy & Radiative Transfer, 2009, 110(18): 2002–2018Google Scholar
  29. 29.
    Bright T J, Liu X L, Zhang Z M. Energy streamlines in near-field radiative heat transfer between hyperbolic metamaterials. Optics Express, 2014, 22(S4): A1112–A1127Google Scholar
  30. 30.
    Song B, Ganjeh Y, Sadat S, Thompson D, Fiorino A, Fernandez-Hurtado V, Feist J, Garcia-Vidal F J, Cuevas J C, Reddy P, Meyhofer E. Enhancement of near-field radiative heat transfer using polar dielectric thin films. Nature Nanotechnology, 2015, 10 (3): 253–258Google Scholar
  31. 31.
    Shi J W, Liu B A, Li P F, Ng L Y, Shen S. Near-field energy extraction with hyperbolic metamaterials. Nano Letters, 2015, 15 (2): 1217–1221Google Scholar
  32. 32.
    Kim K, Song B, Fernandez-Hurtado V, Lee W, Jeong W H, Cui L J, Thompson D, Feist J, Reid MT H, Garcia-Vidal F J, Cuevas J C, Meyhofer E, Reddy P. Radiative heat transfer in the extreme near field. Nature, 2015, 528(7582): 387–391Google Scholar
  33. 33.
    Ijiro T, Yamada N. Near-field radiative heat transfer between two parallel SiO2 plates with and without microcavities. Applied Physics Letters, 2015, 106(2): 023103Google Scholar
  34. 34.
    Ito K, Miura A, Iizuka H, Toshiyoshi H. Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer. Applied Physics Letters, 2015, 106(8): 083504Google Scholar
  35. 35.
    Lim M, Lee S S, Lee B J. Near-field thermal radiation between doped silicon plates at nanoscale gaps. Physical Review B: Condensed Matter and Materials Physics, 2015, 91(19): 195136Google Scholar
  36. 36.
    Bernardi M P, Milovich D, Francoeur M. Radiative heat transfer exceeding the blackbody limit between macroscale planar surfaces separated by a nanosize vacuum gap. Nature Communications, 2016, 7: 12900Google Scholar
  37. 37.
    Watjen J I, Zhao B, Zhang Z M. Near-field radiative heat transfer between doped-Si parallel plates separated by a spacing down to 200 nm. Applied Physics Letters, 2016, 109(20): 203112Google Scholar
  38. 38.
    Boriskina Svetlana V, Tong Jonathan K, Hsu W C, Liao B, Huang Y, Chiloyan V, Chen G. Heat meets light on the nanoscale. Nanophotonics, 2016, 5(1): 134–160Google Scholar
  39. 39.
    Wurfel P. The chemical potential of radiation. Journal of Physics. C. Solid State Physics, 1982, 15(18): 3967–3985Google Scholar
  40. 40.
    Brennan K F. The Physics of Semiconductors. Cambridge: Cambridge University Press, 1999Google Scholar
  41. 41.
    Landsberg P T. Photons at non-zero chemical potential. Journal of Physics. C. Solid State Physics, 1981, 14(32): L1025–L1027Google Scholar
  42. 42.
    Landsberg P T, Tonge G. Thermodynamic energy conversion efficiencies. Journal of Applied Physics, 1980, 51(7): R1–R20Google Scholar
  43. 43.
    Dorofeyev I. Thermodynamic functions of fluctuating electromagnetic fields within a heterogeneous system. Physica Scripta, 2011, 84(5): 055003MATHGoogle Scholar
  44. 44.
    Essex C, Kennedy D C, Berry R S. How hot is radiation? American Journal of Physics, 2003, 71(10): 969–978Google Scholar
  45. 45.
    Nelson R E. A brief history of thermophotovoltaic development. Semiconductor Science and Technology, 2003, 18(5): S141–S143Google Scholar
  46. 46.
    Broman L. Thermophotovoltaics bibliography. Progress in Photovoltaics: Research and Applications, 1995, 3(1): 65–74Google Scholar
  47. 47.
    Basu S, Chen Y B, Zhang Z M. Microscale radiation in thermophotovoltaic devices—a review. International Journal of Energy Research, 2007, 31(6–7): 689–716Google Scholar
  48. 48.
    Zhou Z G, Sakr E, Sun Y B, Bermel P. Solar thermophotovoltaics: reshaping the solar spectrum. Nanophotonics, 2016, 5(1): 1–21Google Scholar
  49. 49.
    Mustafa K F, Abdullah S, Abdullah M Z, Sopian K. A review of combustion-driven thermoelectric (TE) and thermophotovoltaic (TPV) power systems. Renewable & Sustainable Energy Reviews, 2017, 71: 572–584Google Scholar
  50. 50.
    Datas A, Martí A. Thermophotovoltaic energy in space applications: review and future potential. Solar Energy Materials and Solar Cells, 2017, 161: 285–296Google Scholar
  51. 51.
    Bauer T, Forbes I, Pearsall N. The potential of thermophotovoltaic heat recovery for the UK industry. International Journal of Ambient Energy, 2004, 25(1): 19–25Google Scholar
  52. 52.
    Ostrowski L J, Pernisz U C, Fraas L M. Thermophotovoltaic energy conversion: technology and market potential. AIP Conference Proceedings, 1996, 358(1): 251–262Google Scholar
  53. 53.
    Ungaro C, Gray S K, GuptaMC. Solar thermophotovoltaic system using nanostructures. Optics Express, 2015, 23(19): A1149–A1156Google Scholar
  54. 54.
    Bierman D M, Lenert A, Chan W R, Bhatia B, Celanović I, Soljačić M, Wang E N. Enhanced photovoltaic energy conversion using thermally based spectral shaping. Nature Energy, 2016, 1(6): 16068Google Scholar
  55. 55.
    Wang L P, Zhang Z M. Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics. Applied Physics Letters, 2012, 100(6): 063902Google Scholar
  56. 56.
    Zhao B, Wang L, Shuai Y, Zhang Z M. Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure. International Journal of Heat and Mass Transfer, 2013, 67: 637–645Google Scholar
  57. 57.
    Tong J K, Hsu W C, Huang Y, Boriskina S V, Chen G. Thin-film ‘thermal well’ emitters and absorbers for high-efficiency thermophotovoltaics. Scientific Reports, 2015, 5(1): 10661Google Scholar
  58. 58.
    DeSutter J, Bernardi M P, Francoeur M. Determination of thermal emission spectra maximizing thermophotovoltaic performance using a genetic algorithm. Energy Conversion and Management, 2016, 108: 429–438Google Scholar
  59. 59.
    Whale M D. A fluctuational electrodynamic analysis of microscale radiative transfer and the design of microscale thermophotovoltaic devices. Dissertation for the Doctoral Degree. Cambridge, MA: Massachusetts Institute of Technology, 1997Google Scholar
  60. 60.
    Whale M D, Cravalho E G. Modeling and performance of microscale thermophotovoltaic energy conversion devices. IEEE Transactions on Energy Conversion, 2002, 17(1): 130–142Google Scholar
  61. 61.
    Pan J L, Choy H K H, Fonstad C G. Very large radiative transfer over small distances from a black body for thermophotovoltaic applications. IEEE Transactions on Electron Devices, 2000, 47(1): 241–249Google Scholar
  62. 62.
    Narayanaswamy A, Chen G. Surface modes for near field thermophotovoltaics. Applied Physics Letters, 2003, 82(20): 3544–3546Google Scholar
  63. 63.
    Laroche M, Carminati R, Greffet J J. Near-field thermophotovoltaic energy conversion. Journal of Applied Physics, 2006, 100(6): 063704Google Scholar
  64. 64.
    Park K, Basu S, King W P, Zhang Z M. Performance analysis of near-field thermophotovoltaic devices considering absorption distribution. Journal of Quantitative Spectroscopy & Radiative Transfer, 2008, 109(2): 305–316Google Scholar
  65. 65.
    Francoeur M, Vaillon R, Mengüç M P. Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators. IEEE Transactions on Energy Conversion, 2011, 26(2): 686–698Google Scholar
  66. 66.
    Ilic O, Jablan M, Joannopoulos J D, Celanovic I, Soljačić M. Overcoming the black body limit in plasmonic and graphene nearfield thermophotovoltaic systems. Optics Express, 2012, 20(S3): A366–A384Google Scholar
  67. 67.
    Messina R, Ben-Abdallah P. Graphene-based photovoltaic cells for near-field thermal energy conversion. Scientific Reports, 2013, 3 (1): 1383Google Scholar
  68. 68.
    Guo Y, Jacob Z. Thermal hyperbolic metamaterials. Optics Express, 2013, 21(12): 15014–15019Google Scholar
  69. 69.
    Svetovoy V B, Palasantzas G. Graphene-on-silicon near-field thermophotovoltaic cell. Physical Review Applied, 2014, 2(3): 034006Google Scholar
  70. 70.
    Bright T J, Wang L P, Zhang Z M. Performance of near-field thermophotovoltaic cells enhanced with a backside reflector. Journal of Heat Transfer, 2014, 136(6): 062701–062709Google Scholar
  71. 71.
    Chen K, Santhanam P, Fan S. Suppressing sub-bandgap phononpolariton heat transfer in near-field thermophotovoltaic devices for waste heat recovery. Applied Physics Letters, 2015, 107(9): 091106Google Scholar
  72. 72.
    Bernardi M P, Dupré O, Blandre E, Chapuis P O, Vaillon R, Francoeur M. Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators. Scientific Reports, 2015, 5 (1): 11626Google Scholar
  73. 73.
    Molesky S, Jacob Z. Ideal near-field thermophotovoltaic cells. Physical Review B: Condensed Matter and Materials Physics, 2015, 91(20): 205435Google Scholar
  74. 74.
    Lim M, Jin S, Lee S S, Lee B J. Graphene-assisted Si-InSb thermophotovoltaic system for low temperature applications. Optics Express, 2015, 23(7): A240–A253Google Scholar
  75. 75.
    Chang J Y, Yang Y, Wang L. Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications. International Journal of Heat and Mass Transfer, 2015, 87: 237–247Google Scholar
  76. 76.
    Jin S, Lim M, Lee S S, Lee B J. Hyperbolic metamaterial-based near-field thermophotovoltaic system for hundreds of nanometer vacuum gap. Optics Express, 2016, 24(6): A635–A649Google Scholar
  77. 77.
    Lim M, Lee S S, Lee B J. Effects of multilayered graphene on the performance of near-field thermophotovoltaic system at longer vacuum gap distances. Journal of Quantitative Spectroscopy & Radiative Transfer, 2017, 197: 84–94Google Scholar
  78. 78.
    St-Gelais R, Bhatt G R, Zhu L, Fan S, Lipson M. Hot carrier-based near-field thermophotovoltaic energy conversion. ACS Nano, 2017, 11(3): 3001–3009Google Scholar
  79. 79.
    Watjen J I, Liu X L, Zhao B, Zhang Z M. A computational simulation of using tungsten gratings in near-field thermophotovoltaic devices. Journal of Heat Transfer, 2017, 139(5): 052704Google Scholar
  80. 80.
    DiMatteo R S, Greiff P, Finberg S L, Young-Waithe K A, Choy H K H, Masaki M M, Fonstad C G. Enhanced photogeneration of carriers in a semiconductor via coupling across a nonisothermal nanoscale vacuum gap. Applied Physics Letters, 2001, 79(12): 1894–1896Google Scholar
  81. 81.
    DiMatteo R, Greiff P, Seltzer D, Meulenberg D, Brown E, Carlen E, Kaiser K, Finberg S, Nguyen H, Azarkevich J, Baldasaro P, Beausang J, Danielson L, Dashiell M, DePoy D, Ehsani H, Topper W, Rahner K, Sieriej R. Micron-gap thermophotovoltaics (MTPV). AIP Conference Proceedings, 2004, 738(1): 42–51Google Scholar
  82. 82.
    Hanamura K, Mori K. Nano-gap TPV generation of electricity through evanescent wave in near-field above emitter surface. AIP Conference Proceedings, 2007, 890(1): 291–296Google Scholar
  83. 83.
    Poddubny A, Iorsh I, Belov P, Kivshar Y. Hyperbolic metamaterials. Nature Photonics, 2013, 7(12): 948–957Google Scholar
  84. 84.
    Guo Y, Cortes C L, Molesky S, Jacob Z. Broadband super- Planckian thermal emission from hyperbolic metamaterials. Applied Physics Letters, 2012, 101(13): 131106Google Scholar
  85. 85.
    Byrnes S J, Blanchard R, Capasso F. Harvesting renewable energy from Earth’s mid-infrared emissions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111 (11): 3927–3932Google Scholar
  86. 86.
    Santhanam P, Fan S H. Thermal-to-electrical energy conversion by diodes under negative illumination. Physical Review B: Condensed Matter and Materials Physics, 2016, 93(16): 161410 (R)Google Scholar
  87. 87.
    Hsu W C, Tong J K, Liao B L, Huang Y, Boriskina S V, Chen G. Entropic and near-field improvements of thermoradiative cells. Scientific Reports, 2016, 6(1): 34837Google Scholar
  88. 88.
    Wang B, Lin C, Teo K H, Zhang Z. Thermoradiative device enhanced by near-field coupled structures. Journal of Quantitative Spectroscopy & Radiative Transfer, 2017, 196: 10–16Google Scholar
  89. 89.
    Fernández J J. Thermoradiative energy conversion with quasifermi level variations. IEEE Transactions on Electron Devices, 2017, 64(1): 250–255Google Scholar
  90. 90.
    Dousmanis G C, Mueller CW, Nelson H, Petzinger K G. Evidence of refrigerating action by means of photon emission in semiconductor diodes. Physical Review, 1964, 133(1A): A316–A318Google Scholar
  91. 91.
    Mal’Shukov A, Chao K. Opto-thermionic refrigeration in semiconductor heterostructures. Physical Review Letters, 2001, 86(24): 5570–5573Google Scholar
  92. 92.
    Han P, Jin K, Zhou Y, Wang X, Ma Z, Ren S F, Mal’Shukov A G, Chao K A. Analysis of optothermionic refrigeration based on semiconductor heterojunction. Journal of Applied Physics, 2006, 99(7): 074504Google Scholar
  93. 93.
    Yu S Q, Wang J B, Ding D, Johnson S R, Vasileska D, Zhang Y H. Impact of electronic density of states on electroluminescence refrigeration. Solid-State Electronics, 2007, 51(10): 1387–1390Google Scholar
  94. 94.
    Heikkilä O, Oksanen J, Tulkki J. Ultimate limit and temperature dependency of light-emitting diode efficiency. Journal of Applied Physics, 2009, 105(9): 093119Google Scholar
  95. 95.
    Yen S T, Lee K C. Analysis of heterostructures for electroluminescent refrigeration and light emitting without heat generation. Journal of Applied Physics, 2010, 107(5): 054513Google Scholar
  96. 96.
    Oksanen J, Tulkki J. Thermophotonic heat pump—a theoretical model and numerical simulations. Journal of Applied Physics, 2010, 107(9): 093106Google Scholar
  97. 97.
    Lee K C, Yen S T. Photon recycling effect on electroluminescent refrigeration. Journal of Applied Physics, 2012, 111(1): 014511Google Scholar
  98. 98.
    Santhanam P, Huang D, Gray D J, Ram R J. Electro-luminescent cooling: light emitting diodes above unity efficiency. In: Laser Refrigeration of Solids VI, San Francisco, CA: SPIE, 2013, 863807Google Scholar
  99. 99.
    Chen K, Santhanam P, Sandhu S, Zhu L, Fan S. Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer. Physical Review B: Condensed Matter and Materials Physics, 2015, 91(13): 134301Google Scholar
  100. 100.
    Liu X L, Zhang Z M. High-performance electroluminescent refrigeration enabled by photon tunneling. Nano Energy, 2016, 26: 353–359Google Scholar
  101. 101.
    Ashley T, Elliott C T, Gordon N T, Hall R S, Johnson A D, Pryce G J. Negative luminescence from In1–xAlxSb and CdxHg1–xTe diodes. Infrared Physics & Technology, 1995, 36(7): 1037–1044Google Scholar
  102. 102.
    Elliott C T. Negative luminescence and its applications. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2001, 359 (1780): 567Google Scholar
  103. 103.
    Ashley T, Nash G R. Negative luminescence. In: Krier A, eds. Mid-infrared Semiconductor Optoelectronics. London: Springer London, 2006, 453–485Google Scholar
  104. 104.
    Ivanov-Omskii V I, Matveev B A. Negative luminescence and devices based on this phenomenon. Semiconductors, 2007, 41(3): 247–258Google Scholar
  105. 105.
    Chen K, Santhanam P, Fan S. Near-field enhanced negative luminescent refrigeration. Physical Review Applied, 2016, 6(2): 024014Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Eric Tervo
    • 1
  • Elham Bagherisereshki
    • 1
  • Zhuomin Zhang
    • 1
  1. 1.George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations