Skip to main content
Log in

Solar fuel from photo-thermal catalytic reactions with spectrum-selectivity: a review

  • Review Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

Solar fuel is one of the ideal energy sources in the future. The synergy of photo and thermal effects leads to a new approach to higher solar fuel production under relatively mild conditions. This paper reviews different approaches for solar fuel production from spectrumselective photo-thermal synergetic catalysis. The review begins with the meaning of synergetic effects, and the mechanisms of spectrum-selectivity and photo-thermal catalysis. Then, from a technical perspective, a number of experimental or theoretical works are sorted by the chemical reactions and the sacrificial reagents applied. In addition, these works are summarized and tabulated based on the operating conditions, spectrum-selectivity, materials, and productivity. A discussion is finally presented concerning future development of photo-thermal catalytic reactions with spectrum-selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harvey P R, Rudham R, Ward S. Photocatalytic oxidation of liquid 2-propanol by titanium dioxide. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1983, 79(6): 1381–1390

    Article  Google Scholar 

  2. Okamoto K, Yamamoto Y, Tanaka H, Itaya A. Kinetics of heterogeneous photocatalytic decomposition of phenol over anatase TiO2 powder. Bulletin of the Chemical Society of Japan, 1985, 58 (7): 2023–2028

    Article  Google Scholar 

  3. Chen L C, Chou T C. Kinetics of photodecolorization of methylorange using titanium-dioxide as catalyst. Industrial & Engineering Chemistry Research, 1993, 32(7): 1520–1527

    Article  Google Scholar 

  4. Vorontsov A V, Stoyanova I V, Kozlov D V, Simagina V I, Savinov E N. Kinetics of the photocatalytic oxidation of gaseous acetone over platinized titanium dioxide. Journal of Catalysis, 2000, 189(2): 360–369

    Article  Google Scholar 

  5. Yamazoe S, Hitomi Y, Shishido T, Tanaka T. Kinetic study of photo-oxidation of NH3 over TiO2. Applied Catalysis B: Environmental, 2008, 82(1–2): 67–76

    Article  Google Scholar 

  6. Hussein F H, Rudham R. Photocatalytic dehydrogenation of liquid alcohols by platinized anatase. Journal of the Chemical Society, Faraday Transactions I, 1987, 83(5): 1631–1639

    Article  Google Scholar 

  7. Naito S. Study of photocatalytic reaction of methanol with water over Rh-loaded, and Pd-loaded TiO2 catalysts––the role of added alkali-metal cations. Canadian Journal of Chemistry-Revue Canadienne De Chimie, 1986, 64(9): 1795–1799

    Article  Google Scholar 

  8. Karakitsou K, Verykios X E. Definition of the intrinsic rate of photocatalytic cleavage of water over Pt-RuO2/TiO2 catalysts. Journal of Catalysis, 1995, 152(2): 360–367

    Article  Google Scholar 

  9. Zhang J, Tang Y L, Hu G, Gao B L, Gan Z X, Chu P K. Carbon nanodots-based nanocomposites with enhanced photocatalytic performance and photothermal effects. Applied Physics Letters, 2017, 111(1): 013904

    Article  Google Scholar 

  10. Liu X, Ye L, Ma Z, Han C, Wang L, Jia Z, Su F, Xie H. Photothermal effect of infrared light to enhance solar catalytic hydrogen generation. Catalysis Communications, 2017, 102: 13–16

    Article  Google Scholar 

  11. Mangrulkar P A, Chilkalwar A A, Kotkondawar A V, Manwar N R, Antony P S, Hippargi G, Labhsetwar N, Trachtenberg M C, Rayalu S S. Plasmonic nanostructured Zn/ZnO composite enhances carbonic anhydrase driven photocatalytic hydrogen generation. Journal of CO2 Utilization, 2017, 17: 207–212

    Article  Google Scholar 

  12. Panayotov D A, Morris J R. Surface chemistry of Au/TiO2: thermally and photolytically activated reactions. Surface Science Reports, 2016, 71(1): 77–271

    Article  Google Scholar 

  13. Wentworth W E, Batten C F, Wei G. The photo-assisted thermal decomposition of methanol and isopropanol in a fluidized bed. Energy, 1987, 12(3–4): 319–331

    Article  Google Scholar 

  14. Yu S, Zhang T, Xie Y, Wang Q, Gao X, Zhang R, Zhang Y, Su H. Synthesis and characterization of iron-based catalyst on mesoporous titania for photo-thermal F-T synthesis. International Journal of Hydrogen Energy, 2015, 40(1): 870–877

    Article  Google Scholar 

  15. Verma R, Samdarshi S K, Bojja S, Paul S, Choudhury B. A novel thermophotocatalyst of mixed-phase cerium oxide (CeO2/Ce2O3) homocomposite nanostructure: role of interface and oxygen vacancies. Solar Energy Materials and Solar Cells, 2015, 141: 414–422

    Article  Google Scholar 

  16. Huang K, Lin L, Yang K, Dai W, Chen X, Fu X. Promotion effect of ultraviolet light on NO + CO reaction over Pt/TiO2 and Pt/CeO2-TiO2 catalysts. Applied Catalysis B: Environmental, 2015, 179: 395–406

    Article  Google Scholar 

  17. Nikitenko S I, Chave T, Cau C, Brau H P, Flaud V. Photothermal hydrogen production using noble-metal-free Ti@TiO2 core–shell nanoparticles under Visible–NIR light irradiation. ACS Catalysis, 2015, 5(8): 4790–4795

    Article  Google Scholar 

  18. Ren J, Ouyang S, Xu H, Meng X, Wang T, Wang D, Ye J. Targeting activation of CO2 and H2 over Ru-loaded ultrathin layered double hydroxides to achieve efficient photothermal CO2 methanation in flow-type system. Advanced Energy Materials, 2017, 7(5): 1601657

    Article  Google Scholar 

  19. Kho E T, Tan T H, Lovell E, Wong R J, Scott J, Amal R. A review on photo-thermal catalytic conversion of carbon dioxide. Green Energy & Environment, 2017, 2(3): 204–217

    Article  Google Scholar 

  20. Delasa H, Rosales B S. Photocatalytic Technologies. Beijing: Science Press, 2010

    Google Scholar 

  21. Li Y, Wang C, Zheng H, Wan F, Yu F, Zhang X, Liu Y. Surface oxygen vacancies on WO3 contributed to enhanced photothermosynergistic effect. Applied Surface Science, 2017, 391, Part B: 654–661

    Article  Google Scholar 

  22. Lin L, Wang K, Yang K, Chen X, Fu X, Dai W. The visible-lightassisted thermocatalytic methanation of CO2 over Ru/TiO(2–x)Nx. Applied Catalysis B: Environmental, 2017, 204: 440–455

    Article  Google Scholar 

  23. Xie S, Wang Z, Cheng F, Zhang P, Mai W, Tong Y. Ceria and ceriabased nanostructured materials for photoenergy applications. Nano Energy, 2017, 34: 313–337

    Article  Google Scholar 

  24. Kale M J, Avanesian T, Christopher P. Direct photocatalysis by plasmonic nanostructures. ACS Catalysis, 2014, 4(1): 116–128

    Article  Google Scholar 

  25. Wang C, Ranasingha O, Natesakhawat S, Ohodnicki P R, Andio M, Lewis J P, Matranga C. Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2. Nanoscale, 2013, 5(15): 6968–6974

    Article  Google Scholar 

  26. Looser R, Vivar M, Everett V. Spectral characterisation and longterm performance analysis of various commercial heat transfer fluids (HTF) as direct-absorption filters for CPV-T beam-splitting applications. Applied Energy, 2014, 113: 1496–1511

    Article  Google Scholar 

  27. Draine B T, Flatau P J. Discrete-dipole approximation for scattering calculations. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 1994, 11(4): 1491–1499

    Article  Google Scholar 

  28. Oubre C, Nordlander P. Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method. Journal of Physical Chemistry B, 2004, 108(46): 17740–17747

    Article  Google Scholar 

  29. Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles. New York: Wiley, 1986

    Google Scholar 

  30. Duan H, Xuan Y. Enhanced optical absorption of the plasmonic nanoshell suspension based on the solar photocatalytic hydrogen production system. Applied Energy, 2014, 114: 22–29

    Article  Google Scholar 

  31. Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous germanium. Physica Status Solidi, 1966, 15 (2): 627–637 (b)

    Article  Google Scholar 

  32. Ren L, Mao M, Li Y, Lan L, Zhang Z, Zhao X. Novel photothermocatalytic synergetic effect leads to high catalytic activity and excellent durability of anatase TiO2 nanosheets with dominant {001} facets for benzene abatement. Applied Catalysis B: Environmental, 2016, 198: 303–310

    Article  Google Scholar 

  33. Ohtani B. Revisiting the fundamental physical chemistry in heterogeneous photocatalysis: its thermodynamics and kinetics. Physical Chemistry Chemical Physics, 2014, 16(5): 1788–1797

    Article  Google Scholar 

  34. Archer M D, Bolton J R. Requirements for ideal performance of photochemical and photovoltaic solar energy converters. Journal of Physical Chemistry, 1990, 94(21): 8028–8036

    Article  Google Scholar 

  35. Liu B, Zhao X. A kinetic model for evaluating the dependence of the quantum yield of nano-TiO2 based photocatalysis on light intensity, grain size, carrier lifetime, and minority carrier diffusion coefficient: indirect interfacial charge transfer. Electrochimica Acta, 2010, 55 (12): 4062–4070

    Article  Google Scholar 

  36. Liang H, Wang F, Cheng Z, Hu S, Xiao B, Gong X, Lin B, Tan J, Li X, Cao R, Liang W, Liu L. Analyzing the effects of reaction temperature on photo-thermo chemical synergetic catalytic water splitting under full-spectrum solar irradiation: an experimental and thermodynamic investigation. International Journal of Hydrogen Energy, 2017, 42(17): 12133–12142

    Article  Google Scholar 

  37. Fuentes M, Vivar M, Scott J, Srithar K, Skryabin I. Results from a first autonomous optically adapted photocatalytic-photovoltaic module for water purification. Solar Energy Materials and Solar Cells, 2012, 100: 216–225

    Article  Google Scholar 

  38. Vivar M, Fuentes M, Dodd N, Scott J, Skryabin I, Srithar K. First lab-scale experimental results from a hybrid solar water purification and photovoltaic system. Solar Energy Materials and Solar Cells, 2012, 98: 260–266

    Article  Google Scholar 

  39. Vivar M, Skryabin I, Everett V, Blakers A. A concept for a hybrid solar water purification and photovoltaic system. Solar Energy Materials and Solar Cells, 2010, 94(10): 1772–1782

    Article  Google Scholar 

  40. Zamfirescu C, Dincer I. Assessment of a new integrated solar energy system for hydrogen production. Solar Energy, 2014, 107: 700–713

    Article  Google Scholar 

  41. Coridan R H, Nielander A C, Francis S A, McDowell M T, Dix V, Chatman S M, Lewis N S. Methods for comparing the performance of energy-conversion systems for use in solar fuels and solar electricity generation. Energy & Environmental Science, 2015, 8 (10): 2886–2901

    Article  Google Scholar 

  42. Christopher K, Dimitrios R. A review on exergy comparison of hydrogen production methods from renewable energy sources. Energy & Environmental Science, 2012, 5(5): 6640–6651

    Article  Google Scholar 

  43. Ni M, Leung M K H, Leung D Y C, Sumathy K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable & Sustainable Energy Reviews, 2007, 11(3): 401–425

    Article  Google Scholar 

  44. Adleman J R, Boyd D A, Goodwin D G, Psaltis D. Heterogenous catalysis mediated by plasmon heating. Nano Letters, 2009, 9(12): 4417–4423

    Article  Google Scholar 

  45. Christopher P, Xin H, Linic S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nature Chemistry, 2011, 3(6): 467–472

    Article  Google Scholar 

  46. Marimuthu A, Zhang J, Linic S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science, 2013, 339(6127): 1590–1593

    Article  Google Scholar 

  47. Tan T H, Scott J, Ng Y H, Taylor R A, Aguey-Zinsou K F, Amal R. Understanding plasmon and band gap photoexcitation effects on the thermal-catalytic oxidation of ethanol by TiO2-supported gold. ACS Catalysis, 2016, 6(3): 1870–1879

    Article  Google Scholar 

  48. Gao M, Connor P K N, Ho G W. Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination. Energy & Environmental Science, 2016, 9(10): 3151–3160

    Article  Google Scholar 

  49. He Y L, Xiao J, Cheng Z D, Tao Y B A. MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector. Renewable Energy, 2011, 36(3): 976–985

    Article  Google Scholar 

  50. Cheng Z D, He Y L, Cui F Q, Xu R J, Tao Y B. Numerical simulation of a parabolic trough solar collector with nonuniform solar flux conditions by coupling FVM and MCRT method. Solar Energy, 2012, 86(6): 1770–1784

    Article  Google Scholar 

  51. Song R, Luo B, Jing D. Efficient photothermal catalytic hydrogen production over nonplasmonic Pt metal supported on TiO2. In: Proceeding of SPIE 9935, Solar Hydrogen and Nanotechnology XI, 2016, 9935,9935C

    Google Scholar 

  52. Song R, Luo B, Liu M, Geng J, Jing D, Liu H. Synergetic coupling of photo and thermal energy for efficient hydrogen production by formic acid reforming. AIChE Journal, 2017, 63(7): 2916–2925

    Article  Google Scholar 

  53. Puangpetch T, Sreethawong T, Yoshikawa S, Chavadej S. Hydrogen production from photocatalytic water splitting over mesoporousassembled SrTiO3 nanocrystal-based photocatalysts. Journal of Molecular Catalysis A Chemical, 2009, 312(1–2): 97–106

    Article  Google Scholar 

  54. Yoshida H, Hirao K, Nishimoto J I, Shimura K, Kato S, Itoh H, Hattori T. Hydrogen production from methane and water on platinum loaded titanium oxide photocatalysts. Journal of Physical Chemistry C, 2008, 112(14): 5542–5551

    Article  Google Scholar 

  55. Shimura K, Kato S, Yoshida T, Itoh H, Hattori T, Yoshida H. Photocatalytic steam reforming of methane over sodium tantalate. Journal of Physical Chemistry C, 2010, 114(8): 3493–3503

    Article  Google Scholar 

  56. Shimura K, Maeda K, Yoshida H. Thermal acceleration of electron migration in gallium oxide photocatalysts. Journal of Physical Chemistry C, 2011, 115(18): 9041–9047

    Article  Google Scholar 

  57. Kohno Y, Tanaka T, Funabiki T, Yoshida S. Reaction mechanism in the photoreduction of CO2 with CH4 over ZrO2. Physical Chemistry Chemical Physics, 2000, 2(22): 5302–5307

    Article  Google Scholar 

  58. Teramura K, Tanaka T, Ishikawa H, Kohno Y, Funabiki T. Photocatalytic reduction of CO2 to CO in the presence of H2 or CH4 as a reductant over MgO. Journal of Physical Chemistry B, 2004, 108(1): 346–354

    Article  Google Scholar 

  59. Yuliati L, Itoh H, Yoshida H. Photocatalytic conversion of methane and carbon dioxide over gallium oxide. Chemical Physics Letters, 2008, 452(1–3): 178–182

    Article  Google Scholar 

  60. Liu H, Meng X, Dao T D, Zhang H, Li P, Chang K, Wang T, Li M, Nagao T, Ye J. Conversion of carbon dioxide by methane reforming under visible-light irradiation: surface-plasmon-mediated nonpolar molecule activation. Angewandte Chemie International Edition, 2015, 54(39): 11545–11549

    Article  Google Scholar 

  61. Han B, Wei W, Chang L, Cheng P, Hu Y H. Efficient visible light photocatalytic CO2 reforming of CH4. ACS Catalysis, 2016, 6(2): 494–497

    Article  Google Scholar 

  62. Lin X, Yang K, Si R, Chen X, Dai W, Fu X. Photo-assisted catalytic methanation of CO in H2-rich stream over Ru/TiO2. Applied Catalysis B: Environmental, 2014, 147: 585–591

    Article  Google Scholar 

  63. Lin X, Lin L, Huang K, Chen X, Dai W, Fu X. CO methanation promoted by UV irradiation over Ni/TiO2. Applied Catalysis B: Environmental, 2015, 168–169: 416–422

    Article  Google Scholar 

  64. Hoch L B, Wood T E, O’Brien P G, Liao K, Reyes L M, Mims C A, Ozin G A. The rational design of a single-component photocatalyst for gas-phase CO2 reduction using both UV and visible light. Advancement of Science, 2014, 1(1): 1400013

    Google Scholar 

  65. Ghuman K K,Wood T E, Hoch L B, Mims C A, Ozin G A, Singh C V. Illuminating CO2 reduction on frustrated Lewis pair surfaces: investigating the role of surface hydroxides and oxygen vacancies on nanocrystalline In2O3–x(OH)y. Physical Chemistry Chemical Physics, 2015, 17(22): 14623–14635

    Article  Google Scholar 

  66. Hoch L B, O’Brien P G, Jelle A, Sandhel A, Perovic D D, Mims C A, Ozin G A. Nanostructured indium oxide coated silicon nanowire arrays: a hybrid photothermal/photochemical approach to solar fuels. ACS Nano, 2016, 10(9): 9017–9025

    Article  Google Scholar 

  67. Jia J, O'Brien P G, He L, Qiao Q, Fei T, Reyes L M, Burrow T E, Dong Y, Liao K, Varela M, Pennycook S J, Hmadeh M, Helmy A S, Kherani N P, Perovic D D, Ozin G A. Visible and near-infrared photothermal catalyzed hydrogenation of gaseous CO2 over nanostructured Pd@Nb2O5. Advanced Science, 2016, 3(10): 1600189

    Article  Google Scholar 

  68. Upadhye A A, Ro I, Zeng X, Kim H J, Tejedor I, Anderson M A, Dumesic J A, Huber GW. Plasmon-enhanced reverse water gas shift reaction over oxide supported Au catalysts. Catalysis Science & Technology, 2015, 5(5): 2590–2601

    Article  Google Scholar 

  69. Tahir M, Amin N S. Performance analysis of nanostructured NiOIn2O3/ TiO2 catalyst for CO2 photoreduction with H2 in a monolith photoreactor. Chemical Engineering Journal, 2016, 285: 635–649

    Article  Google Scholar 

  70. O'Brien P G, Sandhel A,Wood T E, Jelle A A, Hoch L B, Perovic D D, Mims C A, Ozin G A. Photomethanation of gaseous CO2 over Ru/silicon nanowire catalysts with visible and near-infrared photons. Advanced Science, 2014, 1(1): 1400001

    Article  Google Scholar 

  71. Hisatomi T, Maeda K, Takanabe K, Kubota J, Domen K. Aspects of the water splitting mechanism on (Ga1–xZnx)(N1–xOx) photocatalyst modified with RH2–yCryO3 cocatalyst. Journal of Physical Chemistry C, 2009, 113(51): 21458–21466

    Article  Google Scholar 

  72. Hisatomi T, Miyazaki K, Takanabe K, Maeda K, Kubota J, Sakata Y, Domen K. Isotopic and kinetic assessment of photocatalytic water splitting on Zn-added Ga2O3 photocatalyst loaded with RH2–yCryO3 cocatalyst. Chemical Physics Letters, 2010, 486(4–6): 144–146

    Article  Google Scholar 

  73. Hou X, Hou H J M. Roles of manganese in photosystem II dynamics to irradiations and temperatures. Frontiers in Biology, 2013, 8(3): 312–322

    Article  Google Scholar 

  74. Zhang F, Cady CW, Brudvig GW, Hou H J M. Thermal stability of [Mn(III)(O)2Mn(IV)(H2O)2(Terpy)2](NO3)3 (Terpy = 2,2':6',2?-terpyridine) in aqueous solution. Inorganica Chimica Acta, 2011, 366 (1): 128–133

    Article  Google Scholar 

  75. Hou H J M. Hydrogen energy production using manganese/ semiconductor system inspired by photosynthesis. International Journal of Hydrogen Energy, 2017, 42(12): 8530–8538

    Article  Google Scholar 

  76. Wang L, Wang Y, Cheng Y, Liu Z, Guo Q, Ha M N, Zhao Z. Hydrogen-treated mesoporous WO3 as a reducing agent of CO2 to fuels (CH4 and CH3OH) with enhanced photothermal catalytic performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(14): 5314–5322

    Article  Google Scholar 

  77. Zheng Z J, He Y, He Y L, Wang K. Numerical optimization of catalyst configurations in a solar parabolic trough receiver-reactor with non-uniform heat flux. Solar Energy, 2015, 122: 113–125

    Article  Google Scholar 

  78. Han S, Chen Y, Abanades S, Zhang Z. Improving photoreduction of CO2 with water to CH4 in a novel concentrated solar reactor. Journal of Energy Chemistry, 2017, 26(4): 743–749

    Article  Google Scholar 

  79. Chanmanee W, Islam M F, Dennis B H, MacDonnell F M. Solar photothermochemical alkane reverse combustion. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(10): 2579–2584

    Article  Google Scholar 

  80. T-Raissi A, Muradov N, Huang C, Adebiyi O. Hydrogen from solar via light-assisted high-temperature water splitting cycles. Journal of Solar Energy Engineering, Transactions of the ASME, 2007, 129 (2):184–189

    Article  Google Scholar 

  81. Docao S, Koirala A R, Kim MG, Hwang I C, Song MK, Yoon K B. Solar photochemical-thermal water splitting at 140°C with Culoaded TiO2. Energy & Environmental Science, 2017, 10(2): 628–640

    Article  Google Scholar 

  82. Schwartzenberg K C, Hamilton J W J, Lucid A K, Weitz E, Notestein J, Nolan M, Byrne J A, Gray K A. Multifunctional photo/ thermal catalysts for the reduction of carbon dioxide. Catalysis Today, 2017, 280(Part 1): 65–73

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51406205 and 51236008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, S., Sun, J., Hong, H. et al. Solar fuel from photo-thermal catalytic reactions with spectrum-selectivity: a review. Front. Energy 11, 437–451 (2017). https://doi.org/10.1007/s11708-017-0509-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-017-0509-z

Keywords

Navigation