Frontiers in Energy

, Volume 11, Issue 3, pp 299–309 | Cite as

Highly active and durable Pd-Cu catalysts for oxygen reduction in alkaline exchange membrane fuel cells

  • Xiong Peng
  • Travis J. Omasta
  • Justin M. Roller
  • William E. MustainEmail author
Research Article


A Pd-Cu catalyst, with primary B2-type phase, supported by VulcanXC-7R carbon was synthesized via a solvothermal method. The catalysts were physically and electrochemically characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and both cyclic and linear sweep voltammetry using a rotating disk electrode (RDE). During the RDE testing, the half-wave potential of the Pd-Cu/Vulcan catalyst was 50 mV higher compared to that of commercial Pt/C catalyst for the oxygen reduction reaction (ORR) in alkaline media. The Pd-Cu/Vulcan exhibited a specific activity of 1.27 mA/cm2 and a mass activity of 0.59 A/mgPd at 0.9 V, which were 4 and 3 times greater than that of the commercial Pt/C catalyst, respectively. The Pd-Cu/Vulcan catalyst also showed higher in-situ alkaline exchange membrane fuel cell (AEMFC) performance, with operating power densities of 1100 MW/cm2 operating on H2/O2 and 700 MW/cm2 operating on H2/Air (CO2-free), which were markedly higher than those of the commercial Pt/C. The Pd-Cu/Vulcan catalyst also exhibited high stability during a short-term, in-situ AEMFC durability test, with only around 11% performance loss after 30 hours of operation, an improvement over most AEMFCs reported in the literature to date.


alkaline exchange membrane (AEM) fuel cell Pd-Cu oxygen reduction high performance water 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported in its entirety by the U.S. Department of Energy Early Career Award program though contract number DE-SC0010531. The authors acknowledge the Center for Clean Energy Engineering at the University of Connecticut for free use of the physical characterization equipment. The authors also acknowledge Dr. John Varcoe from University of Surrey for providing the alkaline electrolyte membrane and ionomer.

Supplementary material

11708_2017_495_MOESM1_ESM.pdf (401 kb)
Calculation of electrochemical measurements


  1. 1.
    Zhang H, Shen P K. Recent development of polymer electrolyte membranes for fuel cells. Chemical Reviews, 2012, 112(5): 2780–2832CrossRefGoogle Scholar
  2. 2.
    Service R F. Full cells: shrinking fuel cells promise power in your pocket. Science, 2002, 296(5571): 1222–1224CrossRefGoogle Scholar
  3. 3.
    Li X, Popov B N, Kawahara T, Yanagi H. Non-precious metal catalysts synthesized from precursors of carbon, nitrogen, and transition metal for oxygen reduction in alkaline fuel cells. Journal of Power Sources, 2011, 196(4): 1717–1722CrossRefGoogle Scholar
  4. 4.
    Shao M. Palladium-based electrocatalysts for hydrogen oxidation and oxygen reduction reactions. Journal of Power Sources, 2011, 196(5): 2433–2444CrossRefGoogle Scholar
  5. 5.
    Spendelow J S, Wieckowski A. Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Physical Chemistry Chemical Physics Pccp, 2007, 9(21): 2654CrossRefGoogle Scholar
  6. 6.
    Xin L, Zhang Z, Wang Z, Qi J, Li W. Carbon supported Ag nanoparticles as high performance cathode catalyst for H2/O2 anion exchange membrane fuel cell. Frontiers in Chemistry, 2013, 1: 16CrossRefGoogle Scholar
  7. 7.
    Kruusenberg I, Matisen L, Shah Q, Kannan A M, Tammeveski K. Non-platinum cathode catalysts for alkaline membrane fuel cells. International Journal of Hydrogen Energy, 2012, 37(5): 4406–4412CrossRefGoogle Scholar
  8. 8.
    Sheng W, Bivens A P, Myint M, Zhuang Z, Forest R V, Fang Q, Chen J G, Yan Y. Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes. Energy & Environmental Science, 2014, 7(5): 1719–1724CrossRefGoogle Scholar
  9. 9.
    Lu Y, Jiang Y, Gao X, Wang X, Chen W. Strongly coupled Pd nanotetrahedron/tungsten oxide nanosheet hybrids with enhanced catalytic activity and stability as oxygen reduction electrocatalysts. Journal of the American Chemical Society, 2014, 136(33): 11687–11697CrossRefGoogle Scholar
  10. 10.
    Gewirth A A, Thorum M S. Electroreduction of dioxygen for fuelcell applications: materials and challenges. Cheminform, 2010, 41(28): 3557–3566CrossRefGoogle Scholar
  11. 11.
    Han B, Carlton C E, Kongkanand A, Kukreja R S, Theobald B R, Gan L. Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells. Energy & Environmental Science, 2014, 8(1): 258–266CrossRefGoogle Scholar
  12. 12.
    Huang X, Zhao Z, Cao L, Chen Y, Zhu E, Lin Z, Li M, Yan A, Zettl A, Wang Y M, Duan X, Mueller T, Huang Y. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science, 2015, 348(6240): 1230–1234CrossRefGoogle Scholar
  13. 13.
    Chen C, Kang Y, Huo Z, Zhu Z, Huang W, Xin H L, Snyder J D, Li D, Herron J A, Mavrikakis M, Chi M, More K L, Li Y, Markovic N M, Somorjai G A, Yang P, Stamenkovic V R. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science, 2014, 343(6177): 1339–1343CrossRefGoogle Scholar
  14. 14.
    Service R F. Platinum in fuel cells gets a helping hand. Science, 2007, 315(5809): 172CrossRefGoogle Scholar
  15. 15.
    Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nature Materials, 2011, 10(10): 780–786CrossRefGoogle Scholar
  16. 16.
    Peng X, Zhao S, Omasta T J, Roller JM, Mustain WE. Activity and durability of Pt-Ni nanocage electocatalysts in proton exchange membrane fuel cells. Applied Catalysis B: Environmental, 2016, 203: 927–935CrossRefGoogle Scholar
  17. 17.
    Shao M H, Huang T, Liu P, Zhang J, Sasaki K, Vukmirovic M B, Adzic R R. Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction. Langmuir, 2006, 22(25): 10409–10415CrossRefGoogle Scholar
  18. 18.
    Neergat M, Gunasekar V, Rahul R. Carbon-supported Pd-Fe electrocatalysts for oxygen reduction reaction (ORR) and their methanol tolerance. Journal of Electroanalytical Chemistry, 2011, 658(1–2): 25–32CrossRefGoogle Scholar
  19. 19.
    Wang W, Zheng D, Du C, Zou Z, Zhang X, Xia B, Yang H, Akins D L. Carbon-supported Pd-Co bimetallic nanoparticles as electrocatalysts for the oxygen reduction reaction. Journal of Power Sources, 2007, 167(2): 243–249CrossRefGoogle Scholar
  20. 20.
    Yang R, Bian W, Strasser P, Toney M F. Dealloyed PdCu3 thin film electrocatalysts for oxygen reduction reaction. Journal of Power Sources, 2013, 222(2): 169–176CrossRefGoogle Scholar
  21. 21.
    Wu W P, Periasamy A P, Lin G L, Shih Z Y, Chang H T. Palladium copper nanosponges for electrocatalytic reduction of oxygen and glucose detection. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(18): 9675–9681CrossRefGoogle Scholar
  22. 22.
    Jiang K, Wang P, Guo S, Zhang X, Shen X, Lu G, Su D, Huang X Q. Ordered nanoparticles hot paper ordered PdCu-based nanoparticles as bifunctional oxygen-reduction and ethanol-oxidation electrocatalysts. Angewandte Chemie, 2016, 55(31): 9030–9035CrossRefGoogle Scholar
  23. 23.
    Fouda-Onana F, Bah S, Savadogo O. Palladium-copper alloys as catalysts for the oxygen reduction reaction in an acidic media I: correlation between the ORR kinetic parameters and intrinsic physical properties of the alloys. Journal of Electroanalytical Chemistry, 2009, 636(1–2): 1–9CrossRefGoogle Scholar
  24. 24.
    Kariuki N N, Wang X, Mawdsley J R, Ferrandon M S, Niyogi S G, Vaughey J T, Myers D G. Colloidal synthesis and characterization of carbon-supported Pd-Cu nanoparticle oxygen reduction electrocatalysts. Chemistry of Materials, 2010, 22(14): 4144–4152CrossRefGoogle Scholar
  25. 25.
    Sha Y, Yu T H, Merinov B V, Shirvanian P, Goddard W A. Mechanism for oxygen reduction reaction on Pt3Ni alloy fuel cell cathode. Journal of Physical Chemistry C, 2012, 116(40): 21334–21342CrossRefGoogle Scholar
  26. 26.
    You D J, Jin S A, Lee K H, Pak C, Choi K H, Chang H. Improvement of activity for oxygen reduction reaction by decoration of Iron PdCu/C catalyst. Catalysis Today, 2012, 185(1): 138–142CrossRefGoogle Scholar
  27. 27.
    Wu J, Shan S, Luo J, Joseph P, Petkov V, Zhong C J. PdCu nanoalloy electrocatalysts in oxygen reduction reaction: role of composition and phase state in catalytic synergy. Acs Applied Materials & Interfaces, 2015, 7(46): 25906–25913CrossRefGoogle Scholar
  28. 28.
    Tang W, Henkelman G. Charge redistribution in core-shell nanoparticles to promote oxygen reduction. Journal of Chemical Physics, 2009, 130(19): 1–351CrossRefGoogle Scholar
  29. 29.
    Mustain W E, Kepler K, Prakash J. CoPdx oxygen reduction electrocatalysts for polymer electrolyte membrane and direct methanol fuel cells. Electrochimica Acta, 2007, 52(5): 2102–2108CrossRefGoogle Scholar
  30. 30.
    Nørskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Lyngby D, Jo H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. Journal of Physical Chemistry B, 2004, 108(46): 17886–17892CrossRefGoogle Scholar
  31. 31.
    Zhang L, Hou F, Tan Y W. Shape-tailoring of CuPd nanocrystals for enhancement of electro-catalytic activity in oxygen reduction reaction. Journal of Physical Chemistry B, 2004, 108(46): 17886–17892CrossRefGoogle Scholar
  32. 32.
    Howard B H, Killmeyer R P, Rothenberger K S, Cugini A V, Morreale B D, Enick R M. Hydrogen permeance of palladium–copper alloy membranes over a wide range of temperatures and pressures. Journal of Membrane Science, 2004, 241(2): 207–218CrossRefGoogle Scholar
  33. 33.
    Choi R, Jung J, Kim G, Song K, Kim Y I, Jung S C, Han Y K, Song H, Kang Y M. Ultra-low overpotential and high rate capability in Li–O2 batteries through surface atom arrangement of PdCu nanocatalysts. Energy & Environmental Science, 2014, 7(4): 1362CrossRefGoogle Scholar
  34. 34.
    Yamauchi M, Abe R, Tsukuda T, Kato K, Takata M. Highly selective ammonia synthesis from nitrate with photocatalytically generated hydrogen on CuPd/TiO2. Journal of the American Chemical Society, 2011, 133(5): 1150–1152CrossRefGoogle Scholar
  35. 35.
    Poynton S D, Slade R C T, Omasta T J, Mustain WE, Escudero-Cid R, Ocón P, Varcoe J R. Preparation of radiation-grafted powders for use as anion exchange ionomers in alkaline polymer electrolyte fuel cells. Journal of Materials Chemistry A, 2014, 2(14): 5124–5130CrossRefGoogle Scholar
  36. 36.
    Fukuta K. Eelctrolyte materials for AMFCs and AMFC performance. Tokuyama Comporation. 2011-05-08, Scholar
  37. 37.
    Ponce-González J, Whelligan D K, Wang L, Soualhi R, Wang Y, Peng Y Q, Peng H Q, Apperley D C, Sarode H N, Pandey T P, Divekar A G, Seifert S, Herring AM, Zhuang L, Varcoe J R. High performance aliphatic-heterocyclic benzyl-quaternary ammonium radiation-grafted anion-exchange membranes. Energy & Environmental Science, 2016, 9(12): 3724–3735CrossRefGoogle Scholar
  38. 38.
    Omasta T J,Wang L, Peng X, Lewis C A, Varcoe J R, Mustain WE. Importance of balancing membrane and electrode water in anion exchange membrane fuel cells. Journal of Power Sources, 2017, Scholar
  39. 39.
    Lopes T, Antolini E, Colmati F, Gonzalez E R. Carbon supported Pt-Co (3:1) alloy as improved cathode electrocatalyst for direct ethanol fuel cells. Journal of Power Sources, 2007, 164(1): 111–114CrossRefGoogle Scholar
  40. 40.
    Yamauchi M, Tsukuda T. Production of an ordered (B2) CuPd nanoalloy by low-temperature annealling under hydrogen atmosphere. Dalton Transactions, 2011, 40(18): 4842–4845CrossRefGoogle Scholar
  41. 41.
    Kobayashi H, Yamauchi M, Kitagawa H, Kubota Y. Atomic-level Pd-Pt alloying and largely enhanced hydrogen-storage capacity in bimetallic nanoparticles reconstructed from core/shell structure by a process of hydrogen absorption/desorption. Journal of the American Chemical Society, 2010, 132(16): 5576–5577CrossRefGoogle Scholar
  42. 42.
    Xing Y, Li L, Chusuei C C, Hull R V. Sonochemical oxidation of multiwalled carbon nanotubes. Langmuir, 2005, 21(9): 4185–4190CrossRefGoogle Scholar
  43. 43.
    Kundu S, Wang Y, Xia W, Muhler M. Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces: a quantitative high-resolution XPS and TPD/TPR study. Journal of Physical Chemistry C, 2008, 112(43): 16869–16878CrossRefGoogle Scholar
  44. 44.
    Xie X, Nie Y, Chen S, Ding W, Qi X, Li L. A catalyst superior to carbon-supported-platinum for promotion of the oxygen reduction reaction: reduced-polyoxometalate supported palladium. Journal of Materials Chemistry A, 2015, 3(26): 13962–13969CrossRefGoogle Scholar
  45. 45.
    Nguyen S T, Law HM, Nguyen H T, Kristian N, Wang S, Chan S H, Wang X. Enhancement effect of Ag for Pd/C towards the ethanol electro-oxidation in alkaline media. Applied Catalysis B Environmental, 2009, 91(1–2): 507–515CrossRefGoogle Scholar
  46. 46.
    Guo S, Zhang S, Sun S. Tuning nanoparticle catalysis for the oxygen reduction reaction. Angewandte Chemie International Edition, 2013, 52(33): 8526–8544CrossRefGoogle Scholar
  47. 47.
    Sun T, Xu L, Li S, Chai W, Huang Y, Yan Y S, Chen J F. Cobaltnitrogen- doped ordered macro-/mesoporous carbon for highly efficient oxygen reduction reaction. Applied Catalysis B Environ-mental, 2016, 193: 1–8CrossRefGoogle Scholar
  48. 48.
    Mayrhofer K J J, Strmcnik D, Blizanac B B, Stamenkovic V, Arenz M, Markovic N M. Measurement of oxygen reduction activities via the rotating disc electrode method: from Pt model surfaces to carbon-supported high surface area catalysts. Electrochimica Acta, 2008, 53(7): 3181–3188CrossRefGoogle Scholar
  49. 49.
    Garsany Y, Baturina O A, Swider-Lyons K E, Kocha S S. Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Analytical Chemistry, 2010, 82(15): 6321–6328CrossRefGoogle Scholar
  50. 50.
    Snyder J, Fujita T, Chen M W, Erlebacher J. Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts. Nature Materials, 2010, 9(11): 904–907CrossRefGoogle Scholar
  51. 51.
    Shrestha S, Liu Y, Mustain W E. Electrocatalytic activity and stability of Pt clusters on state-of-the-art supports. Catalysis Reviews, 2011, 53(3): 256–336CrossRefGoogle Scholar
  52. 52.
    Myles T D, Kiss A M, Grew K N, Peracchio A A, Nelson G J, Chiu W K S. Calculation of water diffusion coefficients in an anion exchange membrane using a water permeation technique. Journal of the Electrochemical Society, 2011, 158(7): B790–B796CrossRefGoogle Scholar
  53. 53.
    Kiss A M, Myles T D, Grew K N, Peracchio A A, Nelson G J, Chiu W K S. Carbonate and bicarbonate ion transport in alkaline anion exchange membranes. Journal of the Electrochemical Society, 2013, 160(160): F994–F999CrossRefGoogle Scholar
  54. 54.
    Wang Y, Wang G, Li G, Huang B, Pan J, Liu Q. Pt–Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect or electronic effect? Energy & Environmental Science, 2014, 8(1): 177–181CrossRefGoogle Scholar
  55. 55.
    Kaspar R B, Letterio M P, Wittkopf J A, Gong K, Gu S, Yan Y. Manipulating water in high-performance hydroxide exchange membrane fuel cells through asymmetric humidification and wetproofing. Journal of the Electrochemical Society, 2015, 162 (6): F483–F488CrossRefGoogle Scholar
  56. 56.
    Wright A G, Fan J, Britton B, Weissbach T, Lee H F, Kitching E A, Peckham T J, Holdcroft S. Hexamethyl-p-terphenyl poly(benzimidazolium): a universal hydroxide-conducting polymer for energy conversion devices. Energy & Environmental Science, 2016, 9(6): 2130–2142CrossRefGoogle Scholar
  57. 57.
    Zhu L, Pan J, Wang Y, Han J, Zhuang L, Hickner M A. Multication side chain anion exchange membranes. Macromolecules, 2016, 49(3): 815–824CrossRefGoogle Scholar
  58. 58.
    Miller H A, Lavacchi A, Vizza F, Marelli M, Di Benedetto F, Acapito F D. Pd/C-CeO2 anode catalyst for high-performance platinum-free anion exchange membrane fuel cells. Angewandte Chemie, 2016, 55(20): 6004CrossRefGoogle Scholar
  59. 59.
    Mamlouk M, Horsfall J A, Williams C, Scott K. Radiation grafted membranes for superior anion exchange polymer membrane fuel cells performance. International Journal of Hydrogen Energy, 2012, 37(16): 11912–11920CrossRefGoogle Scholar
  60. 60.
    Ponce-gonza J, Whelligan D K, Wang L, Bance-soualhi R, Pandey T P, Divekar A G, Seifert S, Herring A M, Zhuang L, Varcoe J R. High performance aliphatic-heterocyclic benzyl-quaternary ammonium radiation-grafted anion-exchange membranes. Energy & Environmental Science, 2016, 9(12): 3724–3735CrossRefGoogle Scholar
  61. 61.
    Varcoe J R, Atanassov P, Dekel D R, Herring A M, Hickner M A, Kohl P A. Anion-exchange membranes in electrochemical energy systems. Energy & Environmental Science, 2014, 7(10): 3135–3191CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Xiong Peng
    • 1
  • Travis J. Omasta
    • 1
  • Justin M. Roller
    • 2
  • William E. Mustain
    • 1
    Email author
  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of ConnecticutStorrsUSA
  2. 2.FEIHillsboroUSA

Personalised recommendations