Frontiers in Energy

, Volume 11, Issue 2, pp 210–232 | Cite as

Nodal, zonal, or uniform electricity pricing: how to deal with network congestion

Review Article

Abstract

In this paper, the main contributions to congestion management and electricity pricing, i.e., nodal, zonal, and uniform electricity pricing, are surveyed. The key electricity market concepts are structured and a formal model framework is proposed for electricity transportation, production, and consumption in the context of limited transmission networks and competitive, welfare maximizing electricity markets. In addition, the main results of existing short-run and long-run congestion management studies are explicitly summarized. In particular, the important interconnection between short-run network management approaches and optimal long-run investments in both generation facilities and network lines are highlighted.

Keywords

nodal pricing zonal pricing uniform pricing competitive electricity markets welfare maximization redispatch optimization models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Felder F, Stoft S. Power system economics: designing markets for electricity. IEEE Power & Energy Magazine, 2003, 99(1): 58–63CrossRefGoogle Scholar
  2. 2.
    Kumar A, Srivastava S C, Singh S N. Congestion management in competitive power market: a bibliographical survey. Electric Power Systems Research, 2005, 76(1): 153–164CrossRefGoogle Scholar
  3. 3.
    Neuhoff K, Barquin J, Bialek JW, Boyd R, Dent C J, Echavarren F, Grau T, Von Hirschhausen C, Hobbs B F, Kunz F. Renewable electric energy integration: quantifying the value of design of markets for international transmission capacity. Energy Economics, 2013, 40(2): 760–772CrossRefGoogle Scholar
  4. 4.
    Bohn R E, Caramanis M C, Schweppe F C. Optimal pricing in electrical networks over space and time. Rand Journal of Economics, 1984, 15(3): 360–376CrossRefGoogle Scholar
  5. 5.
    Stoft S. Transmission pricing zones: simple or complex? Electricity Journal, 1997, 10(1): 24–31CrossRefGoogle Scholar
  6. 6.
    Hogan W. Nodes and zones in electricity markets: seeking simplified congestion pricing. In: Designing Competitive Electricity Markets. New York: Springer, 1998Google Scholar
  7. 7.
    De Vries L J, Hakvoort R A. An economic assessment of congestion management methods for electricity transmission networks. Journal of Network Industries, 2002, 3(4): 425–467CrossRefGoogle Scholar
  8. 8.
    Inderst R, Wambach A. Netz-engpassmanagement im deutschen stromübertragungsnetz. Journal of Energy Management, 2007, 31 (4): 333Google Scholar
  9. 9.
    Bjørndal M, Jørnsten K. Zonal pricing in a deregulated electricity market. Energy Journal, 2001, 22(1): 51–74CrossRefGoogle Scholar
  10. 10.
    Smeers Y. Computable equilibrium models and the restructuring of the European electricity and gas markets. Energy Journal, 1998, 18 (4): 1–32Google Scholar
  11. 11.
    Green R. Nodal pricing of electricity: How much does it cost to get it wrong? Journal of Regulatory Economics, 2007, 31(2): 125–149CrossRefGoogle Scholar
  12. 12.
    Grimm V, Martin A, Schmidt M, Weibelzahl M, Zöttl G. Transmission and generation investment in electricity markets: the effects of market splitting and network fee regimes. European Journal of Operational Research, 2016, 254(2): 493–509MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Cho I K. Competitive equilibrium in a radial network. Rand Journal of Economics, 2003, 34(3): 438–60CrossRefGoogle Scholar
  14. 14.
    Hornnes K S, Grande O S, Bakken B H. Main grid development planning in a deregulated market regime. Power Engineering Society Winter Meeting, 2000, 2(2): 845–849Google Scholar
  15. 15.
    Crampes C, Laffont J J. Transport pricing in the electricity industry. Oxford Review of Economic Policy, 2001, 17(3): 313–328CrossRefGoogle Scholar
  16. 16.
    Rious V, Glachant JM, Perez Y, Dessante P. The diversity of design of TSOs. Energy Policy, 2008, 36(9): 3323–3332CrossRefGoogle Scholar
  17. 17.
    Hogan W W. Contract networks for electric power transmission. Journal of Regulatory Economics, 1992, 4(3): 211–242CrossRefGoogle Scholar
  18. 18.
    Chao H P, Peck S. A market mechanism for electric power transmission. Journal of Regulatory Economics, 1996, 10(1): 25–59CrossRefGoogle Scholar
  19. 19.
    Oren S S, Spiller P T, Varaiya P, Wu F. Nodal prices and transmission rights: a critical appraisal. Electricity Journal, 1995, 8 (3): 24–35CrossRefGoogle Scholar
  20. 20.
    Wu F, Varaiya P, Spiller P, Oren S. Folk theorems on transmission access: proofs and counterexamples. Journal of Regulatory Economics, 1996, 10(1): 5–23CrossRefGoogle Scholar
  21. 21.
    Chen L, Suzuki H, Wachi T, Shimura Y. Components of nodal prices for electric power systems. IEEE Transactions on Power Systems, 2002, 17(1): 41–49CrossRefGoogle Scholar
  22. 22.
    Ding F, Fuller J D. Nodal, uniform, or zonal pricing: distribution of economic surplus. IEEE Transactions on Power Systems, 2005, 20 (2): 875–882CrossRefGoogle Scholar
  23. 23.
    Ehrenmann A, Smeers Y. Inefficiencies in European congestion management proposals. SSRN Electronic Journal, 2004, 13(2): 135–152Google Scholar
  24. 24.
    Ramachandran P, Senthil R. Locational marginal pricing approach to minimize congestion in restructured power market. Journal of Electrical and Electronics Engineering Research, 2010Google Scholar
  25. 25.
    Bjørndal M, Jørnsten K, Pignon V. Congestion management in the Nordic power market: counter purchasers and zonal pricing. Competition & Regulation in Network Industries, 2003, 4(3): 271–293CrossRefGoogle Scholar
  26. 26.
    Bjørndal M, Jørnsten K. Benefits from coordinating congestion management—the Nordic power market. Energy Policy, 2007, 35 (3): 1978–1991CrossRefGoogle Scholar
  27. 27.
    Oggioni G, Smeers Y. Market failures of market coupling and counter-trading in Europe: an illustrative model based discussion. Energy Economics, 2013, 35(1): 74–87CrossRefGoogle Scholar
  28. 28.
    Grimm V, Martin A, Sölch C, Weibelzahl M, Zöttl G. Cost-based vs. market-based redispatch: a comparison. (in press).Google Scholar
  29. 29.
    Walton S, Tabors R D. Zonal transmission pricing: methodology and preliminary results from the WSCC. Electricity Journal, 1996, 9(9): 34–41CrossRefGoogle Scholar
  30. 30.
    Blijswijk M J V, De Vries L J. Evaluating congestion management in the Dutch electricity transmission grid. Energy Policy, 2012, 51 (6): 916–926CrossRefGoogle Scholar
  31. 31.
    Trepper K, Bucksteeg M, Weber C. Market splitting in Germany–new evidence from a three-stage numerical model of Europe. Energy Policy, 2015, 87: 199–215CrossRefGoogle Scholar
  32. 32.
    Boucher J, Smeers Y. Towards a common European electricity market. Journal of Network Industries, 2002Google Scholar
  33. 33.
    Rious V, Usaola J, Saguan M, Glachant J M, Dessante P. Assessing available transfer capacity on a realistic European network: impact of assumptions on wind power generation. In:1st International Conference on Infrastructure Systems and Services: Building Networks for a Brighter Future (INFRA), Rotterdam, Netherlands, 2008Google Scholar
  34. 34.
    Bjørndal E, Bjørndal M, Cai H. Nodal pricing in a coupled electricity market. In: 11th International Conference on European Energy Market (EEM), Cracow, Poland, 2014Google Scholar
  35. 35.
    Benders J F. Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik, 1962, 4(1): 238–252MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Oliveira E J D, Silva I C D, Pereira J L R, Carneiro S. Transmission system expansion planning using a sigmoid function to handle integer investment variables. IEEE Transactions on Power Systems, 2006, 20(3): 1616–1621CrossRefGoogle Scholar
  37. 37.
    Binato S, PereiraMV F, Granville S. A new Benders decomposition approach to solve power transmission network design problems. IEEE Transactions on Power Systems, 2001, 16(2): 235–240CrossRefGoogle Scholar
  38. 38.
    Gallego R A, Monticelli A, Romero R. Transmission system expansion planning by an extended genetic algorithm. IEEE Proceedings–Generation, Transmission and Distribution, 1998, 145(3): 329–335CrossRefGoogle Scholar
  39. 39.
    Oliveira G, Costa A, Binato S. Large scale transmission network planning using optimization and heuristic techniques. IEEE Transactions on Power Systems, 1995, 10(4): 1828–1834CrossRefGoogle Scholar
  40. 40.
    Hirst E, Kirby B. Key transmission planning issues. Electricity Journal, 2001, 14(8): 59–70CrossRefGoogle Scholar
  41. 41.
    Alguacil N, Motto A L, Conejo A J. Transmission expansion planning: a mixed-integer LP approach. IEEE Transactions on Power Systems, 2003, 18(3): 1070–1077CrossRefGoogle Scholar
  42. 42.
    David A K, Wen F. Transmission planning and investment under competitive electricity market environment. Power Engineering Society Summer Meeting, 2001, 3(3): 1725–1730CrossRefGoogle Scholar
  43. 43.
    Garver L L. Transmission network estimation using linear programming. IEEE Transactions on Power Apparatus & Systems, 1970, PAS-89(7): 1688–1697Google Scholar
  44. 44.
    Baldick R, Kahn E. Transmission planning issues in a competitive economic environment. IEEE Transactions on Power Systems Pwrs, 1993, 8(4): 1497–1503CrossRefGoogle Scholar
  45. 45.
    Arellano M S, Serra P. Spatial peak-load pricing. Energy Economics, 2004, 29(2): 228–239CrossRefGoogle Scholar
  46. 46.
    Salerian J, Gregan T, Stevens A. Pricing in electricity markets. Journal of Policy Modeling, 2000, 22(7): 859–893CrossRefGoogle Scholar
  47. 47.
    Cedeño E B, Arora S. Integrated transmission and generation planning model in a deregulated environment. Frontiers in Energy, 2013, 7(2): 182–190CrossRefGoogle Scholar
  48. 48.
    Jenabi M, Ghomi S M T F, Smeers Y. Bi-level game approaches for coordination of generation and transmission expansion planning within a market environment. IEEE Transactions on Power Systems, 2013, 28(3): 2639–2650CrossRefGoogle Scholar
  49. 49.
    Steiner P O. Peak loads and efficient pricing. Quarterly Journal of Economics, 1957, 71(4): 585–610CrossRefGoogle Scholar
  50. 50.
    Crew M A, Kleindorfer P R. Marshall and Turvey on peak load or joint product pricing. Journal of Political Economy, 1971, 79(6): 1369–1377CrossRefGoogle Scholar
  51. 51.
    Crew M A, Kleindorfer P R. On off-peak pricing: an alternative technological solution. Kyklos, 1975, 28(1): 80–93CrossRefGoogle Scholar
  52. 52.
    Crew M A, Kleindorfer P R. Peak load pricing with a diverse technology. Bell Journal of Economics, 1976, 7(1): 207–231CrossRefGoogle Scholar
  53. 53.
    Kleindorfer P R, Fernando C S. Peak-load pricing and reliability under uncertainty. Journal of Regulatory Economics, 1993, 5(1): 5–23CrossRefGoogle Scholar
  54. 54.
    Crew M A, Fernando C S, Kleindorfer P R. The theory of peak-load pricing: a survey. Journal of Regulatory Economics, 1995, 8(3): 215–248CrossRefGoogle Scholar
  55. 55.
    Fan H, Cheng H, Yao L. A bi-level programming model for multistage transmission network expansion planning in competitive electricity market. Power and Energy Engineering Conference, 2009, 21(5): 1–6Google Scholar
  56. 56.
    Garcés L P, Conejo A J, García-Bertrand R, Romero R. A bilevel approach to transmission expansion planning within a market environment. IEEE Transactions on Power Systems, 2009, 24(3): 1513–1522CrossRefGoogle Scholar
  57. 57.
    Bjørndal M, Jørnsten K. Investment Paradoxes in Electricity Networks. New York: Springer, 2008CrossRefMATHGoogle Scholar
  58. 58.
    Baringo L, Conejo A J. Transmission and wind power investment. IEEE Transactions on Power Systems, 2012, 27(2): 885–893CrossRefGoogle Scholar
  59. 59.
    Grimm V, Martin A, Weibelzahl M, Zöttl G. On the long-run effects of market splitting: why more price zones might decrease welfare. Energy Policy, 2016, 94: 453–467CrossRefGoogle Scholar
  60. 60.
    Chao H P, Peck S. Reliability management in competitive electricity markets. Journal of Regulatory Economics, 1998, 14(2): 189–200CrossRefGoogle Scholar
  61. 61.
    Leuthold F U, Weigt H, von Hirschhausen C. A large-scale spatial optimization model of the European electricity market. Networks and Spatial Economics, 2012, 12(1): 75–107MathSciNetCrossRefMATHGoogle Scholar
  62. 62.
    Ackermann T. Distributed resources and re-regulated electricity markets. Electric Power Systems Research, 2007, 77(9): 1148–1159CrossRefGoogle Scholar
  63. 63.
    Bjørndal M, Jørnsten K. The deregulated electricity market viewed as a bilevel programming problem. Journal of Global Optimization, 2005, 33(3): 465–475MathSciNetCrossRefMATHGoogle Scholar
  64. 64.
    Frank S, Steponavice I, Rebennack S. Optimal power flow: a bibliographic survey I. Energy Systems, 2012, 3(3): 221–258CrossRefGoogle Scholar
  65. 65.
    Schweppe F C, Caramanis M C, Tabors R D, Bohn R E. Spot Pricing of Electricity. New York: Springer, 1987, 144(5): 399–405Google Scholar
  66. 66.
    Wu F, Zheng F, Wen F. Transmission investment and expansion planning in a restructured electricity market. Energy, 2006, 31(6–7): 954–966CrossRefGoogle Scholar
  67. 67.
    Tong X, Liu C, Luo X, Zhou R. A new approach of available transfer capability incorporating wind generation. Journal of Systems Science and Complexity, 2010, 23(5): 989–998CrossRefMATHGoogle Scholar
  68. 68.
    Luna L, Martínez J, Pacual V, Valino V. Impact of wind power generation on the ATC value. In: 17th Power Systems Computation Conference, Stockholm, Sweden, 2011Google Scholar
  69. 69.
    Luo G, Chen J, Cai D, Shi D, Duan X. Probabilistic assessment of available transfer capability considering spatial correlation in wind power integrated system. IET Generation, Transmission and Distribution, 2013, 7(12): 1527–1535CrossRefGoogle Scholar
  70. 70.
    Bucksteeg M, Trepper K, Weber C. Impacts of RES-generation and demand pattern on net transfer capacity: implications for effectiveness of market splitting in Germany. Ssrn Electronic Journal, 2014, 9(12): 1510–1518Google Scholar
  71. 71.
    Dempe S. Foundations of Bilevel Programming. New York: Springer, 2002MATHGoogle Scholar
  72. 72.
    Koch T. Rapid mathematical programming. Dissertation for the Doctoral Degree. Berlin: Technische Universität, 2005Google Scholar
  73. 73.
    Achterberg T. SCIP. Solving Constraint Integer Programs. Mathematical Programming Computation, 2009, 1(1): 1–41MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Friedrich-Alexander-University Erlangen-Nuremberg, Discrete OptimizationErlangenGermany
  2. 2.Energy Campus NurembergNurembergGermany

Personalised recommendations