Frontiers in Energy

, Volume 11, Issue 2, pp 197–209 | Cite as

Review of stochastic optimization methods for smart grid

  • S. Surender Reddy
  • Vuddanti Sandeep
  • Chan-Mook Jung
Review Article


This paper presents various approaches used by researchers for handling the uncertainties involved in renewable energy sources, load demands, etc. It gives an idea about stochastic programming (SP) and discusses the formulations given by different researchers for objective functions such as cost, loss, generation expansion, and voltage/V control with various conventional and advanced methods. Besides, it gives a brief idea about SP and its applications and discusses different variants of SP such as recourse model, chance constrained programming, sample average approximation, and risk aversion. Moreover, it includes the application of these variants in various power systems. Furthermore, it also includes the general mathematical form of expression for these variants and discusses the mathematical description of the problem and modeling of the system. This review of different optimization techniques will be helpful for smart grid development including renewable energy resources (RERs).


renewable energy sources stochastic optimization smart grid uncertainty optimal power flow (OPF) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pimentel D, Herz M, Glickstein M, Zimmerman M, Allen R, Becker K, Evans J, Hussain B, Sarsfeld R, Grosfeld A, Seidel T. Renewable energy: current and potential issues. Bioscience, 2002, 52(12): 1111–1120CrossRefGoogle Scholar
  2. 2.
    Ochoa L F, Harrison G P. Minimizing energy losses: optimal accommodation and smart operation of renewable distributed generation. IEEE Transactions on Power Systems, 2011, 26(1): 198–205CrossRefGoogle Scholar
  3. 3.
    Pepermans G, Driesen J, Haeseldonckx D, D’haeseleer W, Belmans R. Distributed generation: definition, benefits and issues. Energy Policy, 2005, 33(6): 787–798CrossRefGoogle Scholar
  4. 4.
    Rasmussen C N. Energy storage for improvement of wind power characteristics. IEEE Trondheim Powertech, 2011: 1–8Google Scholar
  5. 5.
    Jabr R A, Pal B C. Intermittent wind generation in optimal power flow dispatching. IET Generation, Transmission & Distribution, 2009, 3(1): 66–74CrossRefGoogle Scholar
  6. 6.
    PSERC Executive Committee. “Challenges in integrating renewable technologies into an electric power system” white paper, April 2010Google Scholar
  7. 7.
    Amarnath R V, Ramana N V. State of art in optimal power flow solution methodologies. Journal of Theoretical and Applied Information Technology, 2011, 30(2): 128–154Google Scholar
  8. 8.
    Selvi V, Umarani R. Comparative analysis of ant colony and particle swarm optimization techniques. International Journal of Computers and Applications, 2010, 5(4): 1–6CrossRefGoogle Scholar
  9. 9.
    AlRashidi M R, El-Hawary M E. A survey of particle swarm optimization applications in electric power systems. IEEE Transactions on Evolutionary Computation, 2009, 13(4): 913–918CrossRefGoogle Scholar
  10. 10.
    Momoh J A, Adapa R, El-Hawary M E. A review of selected optimal power flow literature to 1993. I. Nonlinear and quadratic programming approaches. IEEE Transactions on Power Systems, 1999, 14(1): 96–104CrossRefGoogle Scholar
  11. 11.
    Monticelli A, Pereira M V F, Granville S. Security constrained optimal power flow with post-contingency corrective rescheduling. IEEE Transaction on Power System, 1987, pwrs-2:1(1): 175–180CrossRefGoogle Scholar
  12. 12.
    Stott B, Alsac O, Monticelli A. Security analysis and optimization. Proceedings of the IEEE, 1987, 75(12): 1623–1644CrossRefGoogle Scholar
  13. 13.
    Birge J R, Louveaux F. Introduction to Stochastic Programming. New York: Springer-Verlag, 1997zbMATHGoogle Scholar
  14. 14.
    Allan R N, Da Silva A M L, Burchett R C. Evaluation methods and accuracy in probabilistic load flow solutions. IEEE Transactions on Power Apparatus & Systems, 1981, PAS-100(5): 2539–2546Google Scholar
  15. 15.
    Chandy K M, Low S H, Topcu U, Xu H. A simple optimal power flow model with energy storage. 49th IEEE Conference on Decision and Control, 2011: 58(8) 1051–1057Google Scholar
  16. 16.
    Yau T, Walker L, Graham H, Gupta A. Effects of battery storage devices on power system dispatch. IEEE Transactions on Power Apparatus & Systems, 1981, PAS-100(1): 375–383Google Scholar
  17. 17.
    Su W, Wang J, Roh J. Stochastic energy scheduling in microgrids with intermittent renewable energy resources. IEEE Transactions on Smart Grid, 2013, 5(4): 1876–1883CrossRefGoogle Scholar
  18. 18.
    Liu G, Xu Y, Tomsovic K. Bidding strategy for microgrid in dayahead market based on hybrid stochastic/robust optimization. IEEE Transactions on Smart Grid, 2016, 7(1): 227–237CrossRefGoogle Scholar
  19. 19.
    Nikmehr N, Najafi-Ravadanegh S. Probabilistic optimal power dispatch in multi-microgrids using heuristic algorithms. In: Smart Grid Conference, Tehran, 2014: 1–6Google Scholar
  20. 20.
    Liang H, Zhuang W. Stochastic modeling and optimization in a microgrid: a survey. Energies, 2014, 7(4): 2027–2050CrossRefGoogle Scholar
  21. 21.
    Niknam T. Abarghooee R A, Narimani M R. An efficient scenariobased stochastic programming framework for multi-objective optimal micro-grid operation. Applied Energy, 2012, 99(6): 455–470CrossRefGoogle Scholar
  22. 22.
    Falsafi H, Zakariazadeh A, Jadid S. The role of demand response in single and multi-objective wind-thermal generation scheduling: a stochastic programming. Energy, 2014, 64(1): 853–867CrossRefGoogle Scholar
  23. 23.
    Khazali A, Kalantar M. A stochastic–probabilistic energy and reserve market clearing scheme for smart power systems with plugin electrical vehicles. Energy Conversion and Management, 2015,105: 1046–1058CrossRefGoogle Scholar
  24. 24.
    Yu Z, Jia L, Murphy-Hoye M C, Pratt A, Tong L. Modeling and stochastic control for home energy management. IEEE Transactions on Smart Grid, 2012, 4(4): 2244–2255CrossRefGoogle Scholar
  25. 25.
    Romero-Ruiz J, Pérez-Ruiz J, Martin S, Aguado J A, De la Torre S. Probabilistic congestion management using EVs in a smart grid with intermittent renewable generation. Electric Power Systems Research, 2016, 137: 155–162CrossRefGoogle Scholar
  26. 26.
    Ringler P, Keles D, Fichtner W. Agent-based modelling and simulation of smart electricity grids and markets: a literature review. Renewable & Sustainable Energy Reviews, 2016, 57: 205–215CrossRefGoogle Scholar
  27. 27.
    Koohi-Kamali S, Rahim N A, Mokhlis H, Tyagi V V. Photovoltaic electricity generator dynamic modeling methods for smart grid applications: a review. Renewable & Sustainable Energy Reviews, 2016, 57(C): 131–172CrossRefGoogle Scholar
  28. 28.
    Soroudi A. Robust optimization based self scheduling of hydrothermal Genco in smart grids. Energy, 2013, 61(6): 262–271CrossRefGoogle Scholar
  29. 29.
    Parhoudeh S, Baziar A, Mazareie A, Kavousi-Fard A. A novel stochastic framework based on fuzzy cloud theory for modeling uncertainty in the micro-grids. International Journal of Electrical Power & Energy. 2016, 80: 73–80CrossRefGoogle Scholar
  30. 30.
    Siddaiah R, Saini R P. A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications. Renewable & Sustainable Energy Reviews, 2016, 58: 376–396CrossRefGoogle Scholar
  31. 31.
    Mohammadi S, Mohammadi A. Stochastic scenario-based model and investigating size of battery energy storage and thermal energy storage for micro-grid. International Journal of Electrical Power & Energy System, 2014, 61: 531–546CrossRefGoogle Scholar
  32. 32.
    Soares J, Vale Z. Stochastic optimization of distributed energy resources in smart grids. 2015, 2015/07/01_15PESGM2908.pdfGoogle Scholar
  33. 33.
    Chiang H D. Stochastic security-constrained AC optimal power flow solver for large power networks with renewable. 2015, http:// Scholar
  34. 34.
    Miranda V. Electric vehicles in smart grids: a hybrid Benders/EPSO solver for stochastic reservoir optimization. 2015, org/psace-mho/files/2015/07/06_15PESGM2910.pdfGoogle Scholar
  35. 35.
    Mohan V, Singh J G, Ongsakul W, Unni A C, Sasidharan N. Stochastic effects of renewable energy and loads on optimizing microgrid market benefits. Procedia Technology, 2015, 21: 15–23CrossRefGoogle Scholar
  36. 36.
    Reka S S, Ramesh V. Demand side management scheme in smart grid with cloud computing approach using stochastic dynamic programming. Perspectives in Science, 2016Google Scholar
  37. 37.
    Sobu A, Wu G. Optimal operation planning method for isolated micro grid considering uncertainties of renewable power generations and load demand. In: 2012 IEEE PES Innovative Smart Grid Technologies-Asia, Tianjin, 2012: 1–6Google Scholar
  38. 38.
    Küster T, Lützenberger M, Voß M, Freund D, Albayrak S. Applying heuristics and stochastic optimization for load-responsive charging in a smart grid architecture. In: 2014 IEEE PES Innovative Smart Grid Technologies Conference Europe, Istanbul, 2014: 1–6Google Scholar
  39. 39.
    Zhu Z, Lambotharan S, Chin W H, Fan Z. A stochastic optimization approach to aggregated electric vehicles charging in smart grids. In: 2014 IEEE Innovative Smart Grid Technologies-Asia, Kuala Lumpur, 2014: 51–56CrossRefGoogle Scholar
  40. 40.
    Tan J, Wang L. A stochastic model for quantifying the impact of PHEVs on a residential distribution grid. In: IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems, Nanjing, 2013: 120–125Google Scholar
  41. 41.
    Haghi H V, Qu Z, Lotfifard S. Analytics-based optimization for smart grid operations. In: IEEE International Workshop on Intelligent Energy Systems, San Diego, 2014: 58–63Google Scholar
  42. 42.
    Venayagamoorthy G K. Dynamic, stochastic, computational, and scalable technologies for smart grids. IEEE Computational Intelligence Magazine, 2011, 6(3): 22–35CrossRefGoogle Scholar
  43. 43.
    Gong C, Wang X, Xu W, Tajer A. Distributed real-time energy scheduling in smart grid: stochastic model and fast optimization. IEEE Transactions on Smart Grid, 2013, 4(3): 1476–1489CrossRefGoogle Scholar
  44. 44.
    Momoh J A. Adaptive Stochastic Optimization Techniques with Applications. Boca Raton: CRC Press, 2015CrossRefzbMATHGoogle Scholar
  45. 45.
    Alguacil N, Conejo A J. Multiperiod optimal power flow using benders decomposition. IEEE Transactions on Power Systems, 2000, 15(1): 196–201CrossRefGoogle Scholar
  46. 46.
    Sortomme E, El-Sharkawi M A. Optimal power flow for a system of microgrids with controllable loads and battery storage. Power Systems Conference & Exposition, 2009, 107(1): 1–5Google Scholar
  47. 47.
    Delson J K, Shahidehpour S M. Linear programming applications to power system economics, planning and operations. IEEE Transactions on Power Systems, 1992, 7(3): 1155–1163CrossRefGoogle Scholar
  48. 48.
    Hashemi-Dezaki H, Hamzeh M, Askarian-Abyaneh H, Haeri-Khiavi H. Risk management of smart grids based on managed charging of PHEVs and vehicle-to-grid strategy using Monte Carlo simulation. Energy Conversion and Management, 2015, 100: 262–276CrossRefGoogle Scholar
  49. 49.
    Arnold U, Yildiz Ö. Economic risk analysis of decentralized renewable energy infrastructures—a Monte Carlo simulation approach. Renewable Energy, 2015, 77: 227–239CrossRefGoogle Scholar
  50. 50.
    Pereira E J S, Pinho J T, Galhardo M A B, Macêdo W N. Methodology of risk analysis by Monte Carlo method applied to power generation with renewable energy. Renewable Energy, 2014, 69(3): 347–355CrossRefGoogle Scholar
  51. 51.
    Rosenblueth E. Point estimates for probability moments. Proceedings of the National Academy of Science of the United States of America, 1975, 72(10): 3812–3814MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Rosenblueth E. Two-point estimates in probability. Applied Mathematical Modelling, 1981, 5(5): 329–335MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Morales J M, Pérez-Ruiz J. Point estimate schemes to solve the probabilistic power flow. IEEE Transactions on Power Systems, 2007, 22(4): 1594–1601CrossRefGoogle Scholar
  54. 54.
    Verbic G, Canizares C A. Probabilistic optimal power flow in electricity markets based on a two-point estimate method. IEEE Transactions on Power Systems, 2006, 21(4): 1883–1893CrossRefGoogle Scholar
  55. 55.
    Surender Reddy S, Bijwe P R, Abhyankar A R. Optimal posturing in day-ahead market clearing for uncertainties considering anticipated real-time adjustment costs. IEEE Systems Journal, 2015, 9(1): 177–190CrossRefGoogle Scholar
  56. 56.
    Reddy S S, Momoh J A. Realistic and transparent optimum scheduling strategy for hybrid power system. IEEE Transactions on Smart Grid, 2015, 6(6): 1–1CrossRefGoogle Scholar
  57. 57.
    Reddy S S, Bijwe P R, Abhyankar A R. Joint energy and spinning reserve market clearing incorporating wind power and load forecast uncertainties. IEEE Systems Journal, 2015, 9(1): 152–164CrossRefGoogle Scholar
  58. 58.
    Geidl M, Andersson G. A modeling and optimization approach for multiple energy carrier power flow. Power Technology, IEEE Russia, 2005, 38(16): 1–7Google Scholar
  59. 59.
    Momoh J A, Surender Reddy S. Review of optimization techniques for renewable energy resources. IEEE Symposium on Power Electronics and Machines for Wind and Water Applications, Milwaukee, WI, 2014Google Scholar
  60. 60.
    Momoh J A, Reddy S S, Baxi Y. Stochastic Voltage/Var control with load variation. In: 2014 IEEEPES General Meeting Conference & Exposition, National Harbor, MD (Washington, DC Metro Area), 2014Google Scholar
  61. 61.
    Momoh J A, Baxi Y, Idubor A O. Frame work for real time optimal power flow using real time measurement tools and techniques. In: North American Power Symposium, Boston, 2011, 1–7Google Scholar
  62. 62.
    Wei H, Sasaki H, Kubokawa J, Yokoyama R. An interior point nonlinear programming for optimal power flow problems with a novel data structure. IEEE Transactions on Power Systems Pwrs, 1998, 47(3): 14–18Google Scholar
  63. 63.
    Alguacil N, Conejo A J. Multi period optimal power flow using benders decomposition. IEEE Transactions on Power Systems, 2000, 15(1): 196–201CrossRefGoogle Scholar
  64. 64.
    Todorovski M. Rajičic D. An initialization procedure in solving optimal power flow by genetic algorithm. IEEE Transactions on Power Systems, 2006, 21(2): 480–487CrossRefGoogle Scholar
  65. 65.
    Torres G, Quintana V H. An interior point method for nonlinear optimal power flow using voltage rectangular coordinates. IEEE Transactions on Power Systems, 1998, 13(4): 1211–1218CrossRefGoogle Scholar
  66. 66.
    Jabr R A. Optimal power flow using an extended conic quadratic formulation. IEEE Transactions on Power Systems Pwrs, 2008, 23 (3): 1000–1008CrossRefGoogle Scholar
  67. 67.
    Li Y, McCalley J D. Decomposed SCOPF for improving efficiency. IEEE Transactions on Power Systems Pwrs, 2009, 24(1): 494–495CrossRefGoogle Scholar
  68. 68.
    Vovos P N, Harrison G P, Wallace A R, Bialek J W. Optimal power flow as a tool for fault level-constrained network capacity analysis. IEEE Transactions on Power Systems, 2005, 20(2): 734–741CrossRefGoogle Scholar
  69. 69.
    Moon G H, Wi Y M, Lee K, Joo S K. Fault current constrained decentralized optimal power flow incorporating superconducting fault current limiter (SFCL). IEEE Transactions on Applied Superconductivity, 2011, 21(3): 2157–2160CrossRefGoogle Scholar
  70. 70.
    Verbič G. Cañizares C A. Probabilistic optimal power flow in electricity markets based on a two-point estimate method. IEEE Transactions on Power Systems, 2006, 21(4): 1883–1893CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • S. Surender Reddy
    • 1
  • Vuddanti Sandeep
    • 2
  • Chan-Mook Jung
    • 3
  1. 1.Department of Railroad and Electrical EngineeringWoosong UniversityWoosongRepublic of Korea
  2. 2.School of EngineeringCentral University of KarnatakaKarnatakaIndia
  3. 3.Department of Railroad and Civil EngineeringWoosong UniversityWoosongRepublic of Korea

Personalised recommendations