Advertisement

Exergetic sustainability evaluation and optimization of an irreversible Brayton cycle performance

  • Mohammad H. Ahmadi
  • Mohammad-Ali Ahmadi
  • Esmaeil Aboukazempour
  • Lavinia Grosu
  • Fathollah Pourfayaz
  • Mokhtar Bidi
Research Article
  • 41 Downloads

Abstract

Owing to the energy demands and global warming issue, employing more effective power cycles has become a responsibility. This paper presents a thermodynamical study of an irreversible Brayton cycle with the aim of optimizing the performance of the Brayton cycle. Moreover, four different schemes in the process of multi-objective optimization were suggested, and the outcomes of each scheme are assessed separately. The power output, the concepts of entropy generation, the energy, the exergy output, and the exergy efficiencies for the irreversible Brayton cycle are considered in the analysis. In the first scheme, in order to maximize the exergy output, the ecological function and the ecological coefficient of performance, a multi-objective optimization algorithm (MOEA) is used. In the second scheme, three objective functions including the exergetic performance criteria, the ecological coefficient of performance, and the ecological function are maximized at the same time by employing MOEA. In the third scenario, in order to maximize the exergy output, the exergetic performance criteria and the ecological coefficient of performance, a MOEA is performed. In the last scheme, three objective functions containing the exergetic performance criteria, the ecological coefficient of performance, and the exergy-based ecological function are maximized at the same time by employing multi-objective optimization algorithms. All the strategies are implemented via multi-objective evolutionary algorithms based on the NSGAII method. Finally, to govern the final outcome in each scheme, three well-known decision makers were employed.

Keywords

entropy generation exergy Brayton cycle ecological function irreversibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bejan A. Entropy Generation Through Heat and Fluid Flow. New York: Wiley, 1982Google Scholar
  2. 2.
    Cengel Y A, Boles M A. Thermodynamics: an Engineering Approach. 5th ed., New York: McGraw-Hill, 2011Google Scholar
  3. 3.
    Chen L, Sun F. Advances in Finite Time Thermodynamics: Analysis and Optimization. New York: Nova Science Publishers, 2004Google Scholar
  4. 4.
    Ma Z, Turan A. Finite time thermodynamic modeling of an indirectly fired gas turbine cycle. In: 2010 Asia-Pacific Power and Energy Engineering Conference (APPEEC), 2010Google Scholar
  5. 5.
    Ye X M. Effect of variable heat capacities on performance of an irreversible Miller heat engine. Frontiers in Energy, 2012, 6(3): 280–284CrossRefGoogle Scholar
  6. 6.
    Zheng S, Lin G. Optimization of power and efficiency for an irreversible diesel heat engine. Frontiers of Energy and Power Engineering in China, 2010, 4(4): 560–565CrossRefGoogle Scholar
  7. 7.
    Dobrovicescu A, Grosu L. Optimisation exergo-économique d’une turbine à gaz. Oil & Gas Science and Technology, 2012, 67(4): 661–670CrossRefGoogle Scholar
  8. 8.
    Grosu L, Dobre C, Petrescu S. Study of a Stirling engine used for domestic micro-cogeneration. International Journal of Energy Research, 2015, 39(9): 1280–1294CrossRefGoogle Scholar
  9. 9.
    Angulo-Brown F. An ecological optimization criterion for finitetime heat engines. Journal of Applied Physics, 1991, 69(11): 7465–7469CrossRefGoogle Scholar
  10. 10.
    Yan Z. Comment on “ecological optimization criterion for finitetime heat-engines”. Journal of Applied Physics, 1993, 73(7): 3583CrossRefGoogle Scholar
  11. 11.
    Ust Y. Performance analysis, optimization of irreversible air refrigeration cycles based on ecological coefficient of performance criterion. Applied Thermal Engineering, 2009, 29(1): 47–55CrossRefGoogle Scholar
  12. 12.
    Ust Y. Effect of regeneration on the thermo-ecological performance analysis, optimization of irreversible air refrigerators. Heat & Mass Transfer, 2010, 46(4): 469–478CrossRefGoogle Scholar
  13. 13.
    Ust Y, Sahin B. Performance optimization of irreversible refrigerators based on a new thermo-ecological criterion. International Journal of Refrigeration, 2007, 30(3): 527–534CrossRefGoogle Scholar
  14. 14.
    Ust Y, Akkaya A V, Safa A. Analysis of a vapor compression refrigeration system via exergetic performance coefficient criterion. Journal of the Energy Institute, 2016, 84(84): 66–72Google Scholar
  15. 15.
    Ust Y, Sahin B, Sogut O S. Performance analysis, optimization of an irreversible dual cycle based on an ecological coefficient of performance criterion. Applied Energy, 2005, 82(1): 23–39CrossRefGoogle Scholar
  16. 16.
    Ust Y, Sahin B, Kodal A. Ecological coefficient of performance ECOP optimization for generalized irreversible Carnot heat engines. Journal of the Energy Institute, 2005, 78(3): 145–151CrossRefGoogle Scholar
  17. 17.
    Ust Y, Safa A, Sahin B. Ecological performance analysis of an endoreversible regenerative Brayton heat-engine. Applied Energy, 2005, 80(3): 247–260CrossRefGoogle Scholar
  18. 18.
    Ust Y, Sahin B, Kodal A. Optimization of a dual cycle cogeneration system based on a new exergetic performance criterion. Applied Energy, 2007, 84(11): 1079–1091CrossRefGoogle Scholar
  19. 19.
    Ust Y, Sahin B, Yilmaz T. Optimization of a regenerative gasturbine cogeneration system based on a new exergetic performance criterion: exergetic performance coefficient EPC. Proceedings of the Institution of Mechanical Engineers, Part A, Journal of Power and Energy, 2007, 221(4): 447–456CrossRefGoogle Scholar
  20. 20.
    Ust Y, Sahin B, Kodal A, Akcay I H. Ecological coefficient of performance analysis, optimization of an irreversible regenerative-Brayton heat engine. Applied Energy, 2006, 83(6): 558–572CrossRefGoogle Scholar
  21. 21.
    Ust Y, Sogut S S, Sahin B. The effects of inter cooling, regeneration on thermo-ecological performance analysis of an irreversible-closed Brayton heat engine with variable-temperature thermal reservoirs. Journal of Physics D Applied Physics, 2006, 39(21): 4713–4721CrossRefGoogle Scholar
  22. 22.
    Ust Y, Sogut O S, Sahin B, Durmayaz A. Ecological coefficient of performance ECOP optimization for an irreversible Brayton heat engine with variable-temperature thermal reservoirs. Journal of the Energy Institute, 2006, 79(1): 47–52CrossRefGoogle Scholar
  23. 23.
    Ust Y, Sahin B, Kodal A. Performance analysis of an irreversible Brayton heat engine based on ecological coefficient of performance criterion. International Journal of Thermal Sciences, 2006, 45(1): 94–101CrossRefGoogle Scholar
  24. 24.
    Açıkkalp E. Models for optimum thermo-ecological criteria of actual thermal cycles. Thermal Science, 2012, 17(17): 915–930Google Scholar
  25. 25.
    Açıkkalp E, Yamık H. Limits and optimization of power input or output of actual thermal cycles. Entropy, 2013, 15(8): 3219–3248CrossRefGoogle Scholar
  26. 26.
    Özyer T, Zhang M, Alhajj R. Integrating multi-objective genetic algorithm based clustering and data partitioning for skyline computation. Applied Intelligence, 2011, 35(1): 110–122CrossRefGoogle Scholar
  27. 27.
    Ombuki B, Ross B J, Hanshar F. Multi-objective genetic algorithms for vehicle routing problem with time windows. Applied Intelligence, 2006, 24(1): 17–30CrossRefGoogle Scholar
  28. 28.
    Blecic I, Cecchini A, Trunfio G. A decision support tool coupling a causal model and a multi-objective genetic algorithm. Applied Intelligence, 2007, 26(2): 125–137CrossRefGoogle Scholar
  29. 29.
    Van Veldhuizen D A, Lamont G B. Multi objective evolutionary algorithms analyzing the state-of-the-art. Evolutionary Computation, 2000, 8(2): 125–147CrossRefGoogle Scholar
  30. 30.
    Konak A, Coit D W, Smith A E. Multi-objective optimization using genetic algorithms: a tutorial. Reliability Engineering & System Safety, 2006, 91(9): 992–1007CrossRefGoogle Scholar
  31. 31.
    Ahmadi M H, Hosseinzade H, Sayyaadi H, Mohammadi A H, Kimiaghalam F. Application of the multi-objective optimization method for designing a powered Stirling heat engine: design with maximized power, thermal efficiency and minimized pressure loss. Renewable Energy, 2013, 60(4): 313–322CrossRefGoogle Scholar
  32. 32.
    Ahmadi M H, Sayyaadi H, Mohammadi A H, Barranco-Jimenez M A. Thermo-economic multi-objective optimization of solar dish-Stirling engine by implementing evolutionary algorithm. Energy Conversion & Management, 2013, 73(5): 370–380CrossRefGoogle Scholar
  33. 33.
    Ahmadi MH, Sayyaadi H, Dehghani S, Hosseinzade H. Designing a solar powered Stirling heat engine based on multiple criteria: maximized thermal efficiency and power. Energy Conversion & Management, 2013, 75(75): 282–291Google Scholar
  34. 34.
    Ahmadi M H, Dehghani S, Mohammadi A H, Feidt M, Barranco-Jimenez MA. Optimal design of a solar driven heat engine based on thermal and thermo-economic criteria. Energy Conversion & Management, 2013, 75(11): 635–642CrossRefGoogle Scholar
  35. 35.
    Ahmadi MH, Ahmadi MA, Bayat R, Ashouri M, Feidt M. Thermoeconomic optimization of Stirling heat pump by using nondominated sorting genetic algorithm. Energy Conversion & Management, 2015, 91:315–322Google Scholar
  36. 36.
    Lazzaretto A, Toffolo A. Energy, economy and environment as objectives in multi-criterion optimization of thermal systems design. Energy, 2004, 29(8): 1139–1157CrossRefGoogle Scholar
  37. 37.
    Toghyani S, Kasaeian A, Ahmadi M H. Multi-objective optimization of Stirling engine using non-ideal adiabatic method. Energy Conversion & Management, 2014, 80(5): 54–62CrossRefGoogle Scholar
  38. 38.
    Toffolo A, Lazzaretto A. Evolutionary algorithms for multiobjective energetic and economic optimization in thermal system design. Energy, 2002, 27(6): 549–567CrossRefGoogle Scholar
  39. 39.
    Ahmadi M H, Mohammadi A H, Dehghani S. Evaluation of the maximized power of a regenerative endoreversible Stirling cycle using the thermodynamic analysis. Energy Conversion and Management, 2013, 76(12): 561–570CrossRefGoogle Scholar
  40. 40.
    Ahmadi MH, Ahmadi MA, Mohammadi A H, Feidt M, Pourkiaei S M. Multi-objective optimization of an irreversible Stirling cryogenic refrigerator cycle. Energy Conversion and Management, 2014, 82(6): 351–360CrossRefGoogle Scholar
  41. 41.
    Ahmadi MH, Ahmadi MA, Mohammadi A H, Mehrpooya M, Feidt M. Thermodynamic optimization of Stirling heat pump based on multiple criteria. Energy Conversion and Management, 2014, 80(80): 319–328CrossRefGoogle Scholar
  42. 42.
    Ahmadi M H, Mohammadi A H, Dehghani S, Barranco-Jimenez M A. Multi-objective thermodynamic-based optimization of output power of solar dish-Stirling engine by implementing an evolutionary algorithm. Energy Conversion and Management, 2013, 75: 438–445CrossRefGoogle Scholar
  43. 43.
    Ahmadi MH, Mohammadi A H, Pourkiaei S M. Optimisation of the thermodynamic performance of the Stirling engine. International Journal of Ambient Energy, 2016, 37(2): 149–161CrossRefGoogle Scholar
  44. 44.
    Sayyaadi H, Ahmadi M H, Dehghani S. Optimal design of a solardriven heat engine based on thermal and ecological criteria. Journal of Energy Engineering, 2014, 141(3)Google Scholar
  45. 45.
    Soltani R, Keleshtery P M, Vahdati M, Khoshgoftarmanesh M H, Rosen M A, Amidpour M. Multi-objective optimization of a solarhybrid cogeneration cycle: application to CGAM problem. Energy Conversion & Management, 2014, 81(2): 60–71CrossRefGoogle Scholar
  46. 46.
    Ahmadi M H, Ahmadi M A, Mehrpooya M, Hosseinzade H, Feidt M. Thermodynamic and thermoeconomic analysis and optimization of performance of irreversible four-temperature-level absorption refrigeration. Energy Conversion & Management, 2014, 88:1051–1059CrossRefGoogle Scholar
  47. 47.
    Ahmadi M H, Ahmadi M A. Thermodynamic analysis and optimization of an irreversible ericsson cryogenic refrigerator cycle. Energy Conversion and Management, 2015, 89(89): 147–155CrossRefGoogle Scholar
  48. 48.
    Ahmadi M H, Ahmadi M A, Mehrpooya M, Sameti M. Thermo-ecological analysis and optimization performance of an irreversible three-heat-source absorption heat pump. Energy Conversion and Management, 2015, 90: 175–183CrossRefGoogle Scholar
  49. 49.
    Ahmadi MH, Ahmadi MA, Feidt M. Performance optimization of a solar-driven multi-step irreversible brayton cycle based on a multiobjective genetic algorithm. Oil & Gas Science and Technology, 2014, 71(1): 1-11Google Scholar
  50. 50.
    Ahmadi M H, Ahmadi M A. Multi objective optimization of performance of three-heat-source irreversible refrigerators based algorithm NSGAII. Renewable & Sustainable Energy Reviews, 2016, 60: 784–794CrossRefGoogle Scholar
  51. 51.
    Ahmadi M H, Ahmadi M A, Mellit A, Pourfayaz F, Feidt M. Thermodynamic analysis and multi objective optimization of performance of solar dish Stirling engine by the centrality of entransy and entropy generation. International Journal of Electrical Power & Energy Systems, 2016, 78: 88–95CrossRefGoogle Scholar
  52. 52.
    Ahmadi M H, Ahmadi M A, Pourfayaz F, Bidi M. Thermodynamic analysis and optimization for an irreversible heat pump working on reversed Brayton cycle. Energy Conversion and Management, 2016, 110: 260–267CrossRefGoogle Scholar
  53. 53.
    Ahmadi M H, Ahmadi M A, Mehrpooya M, Feidt M, Rosen M A. Optimal design of an Otto cycle based on thermal criteria. Mechanics & Industry, 2016, 17(1): 111CrossRefGoogle Scholar
  54. 54.
    Ahmadi M H, Ahmadi M A, Sadatsakkak S A. Thermodynamic analysis and performance optimization of irreversible Carnot refrigerator by using multi-objective evolutionary algorithms (MOEAs). Renewable & Sustainable Energy Reviews, 2015, 51: 1055–1070CrossRefGoogle Scholar
  55. 55.
    Ahmadi M H, Ahmadi M A, Pourfayaz F. Performance assessment and optimization of an irreversible nano-scale Stirling engine cycle operating with Maxwell-Boltzmann gas. European Physical Journal Plus, 2015, 130(9): 190–203CrossRefGoogle Scholar
  56. 56.
    Sadatsakkak S A, Ahmadi M H, Bayat R, Pourkiaei S M, Feidt M. Optimization density power and thermal efficiency of an endoreversible Braysson cycle by using non-dominated sorting genetic algorithm. Energy Conversion and Management, 2015, 93: 31–39CrossRefGoogle Scholar
  57. 57.
    Sadatsakkak S A, Ahmadi M H, Ahmadi M A. Thermodynamic and thermo-economic analysis and optimization of an irreversible regenerative closed Brayton cycle. Energy Conversion and Management, 2015, 94: 124–129CrossRefGoogle Scholar
  58. 58.
    Ahmadi M H, Ahmadi M A, Shafaei A, Ashouri M, Toghyani S. Thermodynamic analysis and optimization of the Atkinson engine by using NSGA-II. International Journal of Low-Carbon Technologies, 2016, 11: 317–324CrossRefGoogle Scholar
  59. 59.
    Ahmadi M H, Ahmadi M A, Feidt M. Thermodynamic analysis and evolutionary algorithm based on multi-objective optimization of performance for irreversible four-temperature-level refrigeration. Mechanics & Industry, 2015, 16(2): 207CrossRefGoogle Scholar
  60. 60.
    Abu-Nada E, Al-Hinti I, Al-Sarkhi A, Akash B. Thermodynamic modeling of a spark-ignition engine: effect of temperature dependent specific heats. International Communications in Heat and Mass Transfer, 2006, 33(10): 1264–1272CrossRefGoogle Scholar
  61. 61.
    Li J, Chen L, Sun F. Optimal ecological performance of a generalized irreversible Carnot heat pump with a generalized heat transfer law. Termotehnica Thermal Engineering, 2009, 13(2): 61–68Google Scholar
  62. 62.
    Chen L, Zhou J, Sun F, Wu C. Ecological optimization for generalized irreversible Carnot engines. Applied Energy, 2004, 77(3): 327–338CrossRefGoogle Scholar
  63. 63.
    Xia D, Chen L, Sun F. Universal ecological performance for endoreversible heat engine cycles. International Journal of Ambient Energy, 2006, 27(1): 15–20CrossRefGoogle Scholar
  64. 64.
    Özel G, Açıkkalp E, Yamık H. Methods used for evaluating irreversible Brayton cycle and comparing them. International Journal of Sustainable Aviation, 2015, 1(3): 288–298CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Mohammad H. Ahmadi
    • 1
  • Mohammad-Ali Ahmadi
    • 2
  • Esmaeil Aboukazempour
    • 3
  • Lavinia Grosu
    • 4
  • Fathollah Pourfayaz
    • 1
  • Mokhtar Bidi
    • 5
  1. 1.Department of Renewable Energies, Faculty of New Sciences and TechnologiesUniversity of TehranTehranIran
  2. 2.Department of Petroleum Engineering, Ahwaz Faculty of Petroleum EngineeringPetroleum University of Technology (PUT)AhwazIran
  3. 3.Graduate School of the Environment and Energy, Science and Research BranchIslamic Azad UniversityTehranIran
  4. 4.University of Paris Ouest Nanterre La DefenseVille dAvrayFrance
  5. 5.Faculty of Mechanical & Energy EngineeringShahid Beheshti University, A.C.TehranIran

Personalised recommendations