Skip to main content
Log in

A review on front end conversion in ocean wave energy converters

  • Review Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

Harvesting the energy from ocean waves is one of the greatest attractions for energy engineers and scientists. Till date, plenty of methods have been adopted to harvest the energy from the ocean waves. However, due to technological and economical complexity, it is intricate to involve the majority of these energy harvesters in the real ocean environment. Effective utilization and sustainability of any wave energy harvester depend upon its adaptability in the irregular seasonal waves, situation capability in maximum energy extraction and finally fulfilling the economic barriers. In this paper, the front end energy conversions are reviewed in detail which is positioned in the first stage of the wave energy converter among other stages such as power take off (PTO) and electrical energy conversion. If the recent development of these front end energy conversion is well known then developing wave energy converter with economic and commercial viability is possible. The aim of this review is to provide information on front end energy conversion of a point absorber and emphasize the strategies and calamity to be considered in designing such kinds of devices to improve the energy harvesting competence. This will be useful to the engineers for speeding up the development of a matured point absorbing type wave energy converter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clément A, McCullen P, Falcão A, Fiorentino A, Gardner F, Hammarlund K, Lemonis G, Lewis T, Nielsen K, Petroncini S, Pontes M-T, Schild P, Sjöström B-O, Sørensen H C, Thorpe T. Wave energy in Europe: current status and perspectives. Renewable & Sustainable Energy Reviews, 2002, 6(5): 405–431

    Article  Google Scholar 

  2. Pelc R, Fujita R M. Renewable energy from the ocean. Marine Policy, 2002, 26(6): 471–479

    Article  Google Scholar 

  3. Murray R. Review and analysis of ocean energy systems development and supporting policies. Report by AEA Energy & Environment on the behalf of Sustainable Energy Ireland for the IEA’s Implementing Agreement on Ocean Energy Systems, 2006

    Google Scholar 

  4. Langhamer O, Haikonen K, Sundberg J. Wave power—sustainable energy or environmentally costly? A review with special emphasis on linear wave energy converters. Renewable & Sustainable Energy Reviews, 2010, 14(4): 1329–1335

    Article  Google Scholar 

  5. Zabihian F, Fung A S. Review of marine renewable energies: case study of Iran. Renewable & Sustainable Energy Reviews, 2011, 15(5): 2461–2474

    Article  Google Scholar 

  6. Hagerman G. Wave energy resource and economic assessment for the state of Hawaii. SEASUN Power Systems, for DBEDT, Final Report. 1992

    Google Scholar 

  7. Drew B, Plummer A R, Sahinkaya M N. A review of wave energy converter technology. Proceedings of the Institution of Mechanical Engineers. Part A, Journal of Power and Energy, 2009, 223(8): 887–902

    Article  Google Scholar 

  8. Martinelli L, Ruol P, Cortellazzo G. On mooring design of wave energy converters: the seabreath applications. In: Proceedings of 33rd Conference on Coastal Engineering. Santander, Spain, 2012, 1–6

    Google Scholar 

  9. Vicente P C, de O. Falcão A F, Gato L M C, Justino P A P. Dynamics of arrays of floating point-absorber wave energy converters with inter-body and bottom slack-mooring connections. Applied Ocean Research, 2009, 31: 267–281

    Article  Google Scholar 

  10. Fitzgerald J, Bergdahl L. Rigid moorings in shallow water: a wave power application. Part I: experimental verification of methods. Marine Structures, 2009, 22(4): 809–835

    Article  Google Scholar 

  11. Falnes J. A review of wave-energy extraction. Marine Structures, 2007, 20(4): 185–201

    Article  Google Scholar 

  12. Al-Habaibeh A, Su D, McCague J, Knight A. An innovative approach for energy generation from waves. Energy Conversion and Management, 2010, 51(8): 1664–1668

    Article  Google Scholar 

  13. Ahn K K, Truong D Q, Tien H H, Yoon J I. An innovative design of wave energy converter. Renewable Energy, 2012, 42: 186–194

    Article  Google Scholar 

  14. Lindroth S, Leijon M. Offshore wave power measurements—a review. Renewable & Sustainable Energy Reviews, 2011, 15(9): 4274–4285

    Article  Google Scholar 

  15. Nazari M, Ghassemi H, Ghiasi M, Sayehbani M. Design of the point absorber wave energy converter for Assuluyeh Port. Iranica Journal of Energy and Environment, 2013, 4(2): 130–135

    Google Scholar 

  16. Rahm M. Ocean wave energy. Digital Comprehensive Summaries of Uppsala Dissertations. The Faculty of Science and Technology, Uppsala University, 2010

    Google Scholar 

  17. Grilli S T, Grilli A R, Bastien S P. Small buoys for energy harvesting: experimental and numerical modelling studies. In: Proceedings of the 21st International Offshore and Polar Engineering Conference. Hawaii, USA, 2011

    Google Scholar 

  18. Hicks D C, Pleass C M. Physical and mathematical modeling of a point absorber wave energy conversion system with nonlinear damping. Hydrodynamics of OceanWave-Energy Utilization, 1986, 113–124

    Chapter  Google Scholar 

  19. Hadano K, Koirala P, Ikegami K. A refined model for float energy conversion device. In: Proceedings of the 17th International and Polar Engineering Conference. Lisbon, Portugal, 2007

    Google Scholar 

  20. Smith A. Searaser. 2013-12-11, http://www.ecotricity.co.uk

  21. Salter S. Pelamis wave. 2013-12-11, http://www.power-technology.com/projects/pelamis/

  22. Waldron T, Hench S, William S. Neptune wave power. 2013-12-11, http://www.neptunewavepower.com/index.php/technology/photos

  23. Elbae L. Dexawave blue ocean energy. 2013-12-10, http://www.dexawave.com/converters.html

  24. Grey S. AWS ocean. 2013-12-11, http://www.awsocean.com/ technology.aspx

  25. Hadano K, Saito T, Hashida M. Experiment on the energy gain of floats-type wave generator. In: Proceedings of the 11th International Offshore and Polar Engineering Conference. Stavanger, Norway, 2001, 638–645

    Google Scholar 

  26. Taneura K, Nakano K, Koirala P, Hadano K. On the resonance characteristics of the float type wave power generation device. Journal of Environmental Engineering, 2011, 6(3): 542–553

    Article  Google Scholar 

  27. Heikkinen H, Lampinen M J, Böling J. Analytical study of the interaction between waves and cylindrical wave energy converters oscillating in two modes. Renewable Energy, 2013, 50: 150–160

    Article  Google Scholar 

  28. Valério D, Beirão P, Sá da Costa J. Optimisation of wave energy extraction with the Archimedes Wave Swing. Ocean Engineering, 2007, 34(17–18): 2330–2344

    Article  Google Scholar 

  29. Simply Blue Energy. WEC with reference frame. 2013-12-11, http://www.simplyblueenergy.com

  30. Berggren L, Johansson M. Hydrodynamic coefficients of a wave energy device consisting of a buoy and a submerged plate. Applied Ocean Research, 1992, 14(1): 51–58

    Article  Google Scholar 

  31. Columbia Power Technologies, Inc. Manta WEC. 2013-12-11, http://www.columbiapwr.com

  32. Beatty S J. Analysis and development of a three body heaving wave energy converter. Dissertation for the Bachelor’s Degree. Vancouver: University of British Columbia, 2003

    Google Scholar 

  33. Orazov B, O’Reilly O M, Savas Ö. On the dynamics of a novel ocean wave energy converter. Journal of Sound and Vibration, 2010, 329(24): 5058–5069

    Article  Google Scholar 

  34. Mekhiche M, Edwards K A. Ocean power technologies power buoy: system-level design, development and validation methodology. In: Proceedings of the 2nd Marine Energy Technology Symposium. Seattle, WA. 2014

    Google Scholar 

  35. Amarkarthik A, Chandrasekaran S, Sivakumar K, Sinhmar H. Laboratory experiment on using non-floating body to generate electrical energy from water waves. Frontiers in Energy, 2012, 6(4): 361–365

    Article  Google Scholar 

  36. Faizal M, Ahmed M R, Lee Y H. A design outline for floating point absorber wave energy converters. Advances in Mechanical Engineering, 2014: 1–18

    Google Scholar 

  37. Neils S E, Hansen K. Heave type wave energy converter. 2013-12-11, http://www.wavestarenergy.com

  38. Wave Roller. Extracted from web site. 2013-12-11, http://www.awenergy.com/

  39. BioPower Systems. Sway type WEC. 2013-12-11, http://www.biopowersystems.com/

  40. Sustainable Energy Research Group, University of Southampton. Anaconda wave energy converter. 2013-12-11, http://www.energy.soton.ac.uk/

  41. Dalton G J, Alcorn R, Lewis T. Case study feasibility analysis of the Pelamis wave energy convertor in Ireland, Portugal and North America. Renewable Energy, 2010, 35(2): 443–455

    Article  Google Scholar 

  42. Hazlett B, Inculet I, Inculet D. Electric power generation by ‘Surfing’ water waves. Renewable Energy, 2009, 34(11): 2510–2514

    Article  Google Scholar 

  43. Kanki H, Arii S, Furusawa T, Otoyo T. Development of advanced wave power generation system by applying gyroscopic moment. In: Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, 2009

    Google Scholar 

  44. Bracco G, Giorcelli E, Mattiazzo G. ISWEC: a gyroscopic mechanism for wave power exploitation. Mechanism and Machine Theory, 2011, 46(10): 1411–1424

    Article  MATH  Google Scholar 

  45. Ogai S, Umeda S, Ishida H. An experimental study of compressed air generation using a pendulum wave energy converter. Journal of Hydrodynamics, 2010, 22(5): 290–295

    Article  Google Scholar 

  46. Schlemmer K, Fuchshumer F, Böhmer N, Costello R, Villegas C. Design and control of a hydraulic power take-off for an axisymmetric heaving point absorber. In: Proceedings of European Wave and Tidal Energy Conference. Southampton, UK, 2011

    Google Scholar 

  47. Lin Y G, Tu L, Zhang D H, Liu H W, Li W. A study on dual-stroke pendulum wave energy conversion technology based on a water/oil integrated transmission system. Ocean Engineering, 2013, 67: 27–34

    Article  Google Scholar 

  48. McCabe A P, Bradshaw A, Meadowcroft J A C, Aggidis G. Developments in the design of the PS Frog Mk 5 wave energy converter. Renewable Energy, 2006, 31(2): 141–151

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkatesan Baskaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santhosh, N., Baskaran, V. & Amarkarthik, A. A review on front end conversion in ocean wave energy converters. Front. Energy 9, 297–310 (2015). https://doi.org/10.1007/s11708-015-0370-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-015-0370-x

Keywords

Navigation