Advertisement

Frontiers in Energy

, Volume 8, Issue 1, pp 49–61 | Cite as

Liquid metal as energy transportation medium or coolant under harsh environment with temperature below zero centigrade

  • Yunxia Gao
  • Lei Wang
  • Haiyan Li
  • Jing LiuEmail author
Review Article

Abstract

The current highly integrated electronics and energy systems are raising a growing demand for more sophisticated thermal management in harsh environments such as in space or some other cryogenic environment. Recently, it was found that room temperature liquid metals (RTLM) such as gallium or its alloys could significantly reduce the electronics temperature compared with the conventional coolant, like water, oil or more organic fluid. However, most of the works were focused on RTLM which may subject to freeze under low temperature. So far, a systematic interpretation on the preparation and thermal properties of liquid metals under low temperature (here defined as lower than 0°C) has not yet been available and related applications in cryogenic field have been scarce. In this paper, to promote the research along this important direction and to overcome the deficiency of RTLM, a comprehensive evaluation was proposed on the concept of liquid metal with a low melting point below zero centigrade, such as mercury, alkali metal and more additional alloy candidates. With many unique virtues, such liquid metal coolants are expected to open a new technical frontier for heat transfer enhancement, especially in low temperature engineering. Some innovative ways for making low melting temperature liquid metal were outlined to provide a clear theoretical guideline and perform further experiments to discover new materials. Further, a few promising applied situations where low melting temperature liquid metals could play irreplaceable roles were detailed. Finally, some main factors for optimization of low temperature coolant were summarized. Overall, with their evident merits to meet various critical requirements in modern advanced energy and power industries, liquid metals with a low melting temperature below zero centigrade are expected to be the next-generation high-performance heat transfer medium in thermal managements, especially in harsh environment in space.

Keywords

liquid metal cryogenics low melting point thermal management aircraft liquid cooling space exploration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chowdhury I, Prasher R, Lofgreen K, Chrysler G, Narasimhan S, Mahajan R, Koester D, Alley R, Venkatasubramanian R. On-chip cooling by superlattice-based thin-film thermoelectrics. Nature Nanotechnology, 2009, 4(4): 235–238CrossRefGoogle Scholar
  2. 2.
    Arik M, Becker C, Weaver S, Petroski J. Thermal management of LEDs: package to system. In: 3rd International Conference on Solid State Lighting. San Diego, CA, 2003, 64–75Google Scholar
  3. 3.
    Tzuk Y, Tal A, Goldring S, Glick Y, Lebiush E, Kaufman G, Lavi R. Diamond cooling of high-power diode-pumped solid-state lasers. IEEE Journal of Quantum Electronics, 2004, 40(3): 262–269CrossRefGoogle Scholar
  4. 4.
    Strassberg D. Cooling hot microprocessors. EDN (European Edition), 1994, 39: 40–48Google Scholar
  5. 5.
    Lundquist C, Carey V P. Microprocessor-based adaptive thermal control for an air-cooled computer CPU module. In: Proceedings of the 17th Annual IEEE Semiconductor Thermal Measurement and Management Symposium. San Jose, USA, 2001, 168–173Google Scholar
  6. 6.
    Xie H, Ali A, Bhatia R. Use of heat pipes in personal computers. In: Proceedings of the Intersociety Conference—Thermo Mechanical Phenomena in Electronic Systems. Seattle, USA, 1998, 442–448Google Scholar
  7. 7.
    Nquyen T, Mochizuki M, Mashiko K, Saito Y, Sauciuc I. Use of heat pipe/heat sink for thermal management of high performance CPUs. In: Proceedings of the 16th Annual IEEE Semiconductor Thermal Measurement and Management Symposium. San Jose, USA, 2000, 76–79Google Scholar
  8. 8.
    Rao W, Zhou Y X, Liu J, Deng Z S, Ma K Q, Xiang S H. Vaporcompression-refrigerator enabled thermal management of high performance computer. International Congress of Refrigeration, Beijing, China, 2007Google Scholar
  9. 9.
    Amon C, Murthy J, Yao S C, Narumanchi S, Wu C F, Hsieh C C. MEMS-enabled thermal management of high-heat-flux devices EDIFICE embedded droplet impingement for integrated cooling of electronics. Experimental Thermal and Fluid Science, 2001, 25(5): 231–242CrossRefGoogle Scholar
  10. 10.
    Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI. IEEE Electron Device Letters, 1981, 2(5): 126–129CrossRefGoogle Scholar
  11. 11.
    Ma K Q, Liu J. Liquid metal cooling in thermal management of computer chips. Frontiers of Energy and Power Engineering in China, 2007, 1(4): 384–402CrossRefGoogle Scholar
  12. 12.
    Deng Y G, Liu J. Hybrid liquid metal-water cooling system for heat dissipation of high power density microdevices. Heat and Mass Transfer, 2010, 46(11–12): 1327–1334CrossRefGoogle Scholar
  13. 13.
    Deng Y G, Liu J. A liquid metal cooling system for the thermal management of high power LEDs. International Communications in Heat and Mass Transfer, 2010, 37(7): 788–791CrossRefGoogle Scholar
  14. 14.
    Ma K Q, Liu J, Xiang S H, Xie K W, Zhou Y X. Study of thawing behavior of liquid metal used as computer chip coolant. International Journal of Thermal Sciences, 2009, 48(5): 964–974CrossRefGoogle Scholar
  15. 15.
    Dai D, Zhou Y, Liu J. Liquid metal based thermoelectric generation system for waste heat recovery. Renewable Energy, 2011, 36(12): 3530–3536CrossRefGoogle Scholar
  16. 16.
    Deng Y G, Liu J. Heat spreader based on room-temperature liquid metal. ASME Journal of Thermal Science and Engineering Applications, 2012, 4(2): 024501CrossRefGoogle Scholar
  17. 17.
    Li P P, Liu J. Harvesting low grade heat to generate electricity with thermosyphon effect of room temperature liquid metal. Applied Physics Letters, 2011, 99(9): 094106-3CrossRefGoogle Scholar
  18. 18.
    Liu J, Zhou Y X. A computer chip cooling method which uses low melting point metal and its alloys as the cooling fluid. China Patent 02131419.5. 2002Google Scholar
  19. 19.
    Deng Y G, Liu J. Design of practical liquid metal cooling device for heat dissipation of high performance CPUs. ASME Journal of Electronic Packaging, 2010, 132(3): 031009CrossRefGoogle Scholar
  20. 20.
    Ryall J. Space probe set to “collide” with earth to simulate approaching asteroid. 2009-06-11, http://www.sott.net/articles/show/186648
  21. 21.
    Weinberger S. Lockheed trumps boeing for new GPS. 2008-05-16, http://www.wired.com/dangerroom/2008/05/lockheed-trumps/
  22. 22.
    Coppinger R. ESA’s manned ARV team despondent over cash. http://www.flightglobal.com/blogs/hyperbola/2009/01/
  23. 23.
    THERMACORE. Satellite thermal control: unique products for unique challenges. 2013-05-26, http://www.thermacore.com/applications/satellite-thermal-control.aspx
  24. 24.
    Zuo Z J, North MT, Wert K L. High heat flux heat pipe mechanism for cooling of electronics. IEEE Transactions on Components and Packaging Technologies, 2001, 24(2): 220–225CrossRefGoogle Scholar
  25. 25.
    Haws J. Short E. Method and apparatus for cooling with phase change materials and heat pipes. European Patent 00965034.2-2220-US0025297. 2002Google Scholar
  26. 26.
    Meyer L, Dasgupta S, Shaddock D, Tucker J. Fillion R. A silicon-carbide micro-capillary pumped loop for cooling high power devices. In: 9th Annual IEEE Symposium on Semiconductor Thermal Measurement and Management. Austin, USA, 1993, 364–368Google Scholar
  27. 27.
    Butler D, Ku J. Swanson T. Loop heat pipes and capilary pump loops—an application perspective. In: Space Technology and Applications International Forum-STAIF. Albuquerque, USA, 2002, 49–56Google Scholar
  28. 28.
    Golliher E L. Microscale technology electronics cooling overview. In: Space Technology and Applications International Forum-STAIF. Albuquerque, USA, 2002, 250–257Google Scholar
  29. 29.
    Ohadi M, Qi J. Thermal management of harsh environment electronics. Microscale Heat Transfer Fundamentals and Applications, 2005, 193: 479–498CrossRefGoogle Scholar
  30. 30.
    Heffington S N, Black W Z, Glezer A. Vibration-induced droplet atomization heat transfer cell for high-heat flux dissipation. Thermal Challenges in Next Generation Electronic Systems (THERMES-2002). Santa Fe, USA, 2002Google Scholar
  31. 31.
    Fan X, Zeng G, LaBounty C, Croke E, Vashaee D, Shakouri A, Ahn C, Bowers J E. High cooling power density SiGe/Si micro coolers. Electronics Letters, 2001, 37(2): 126–127CrossRefGoogle Scholar
  32. 32.
    Zimm C, Jastrab A, Sternberg A, Pecharsky V Jr, Gschneidner K, Osborne M, Anderson I. Description and performance of a near-room temperature magnetic refrigerator. Advances in Cryogenic Engineering, 1998, 43: 1759–1766CrossRefGoogle Scholar
  33. 33.
    Swfit G W. Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators. New York: Acoustical Society of America (ASA) Publications, 2002Google Scholar
  34. 34.
    Dawson V P, Bowles MD. Taming Liquid Hydrogen: The Centaur Upper Stage Rocket 1958–2002. Washington, DC: NASA Office of External Relations, 2004Google Scholar
  35. 35.
    Kwon D W, Sedwick R J. Cryogenic heat pipe for cooling high temperature superconductors. Cryogenics, 2009, 49(9): 514–523CrossRefGoogle Scholar
  36. 36.
    Purvis T, Vaughn J M, Rogers T L, Chen X, Overhoff K A, Sinswat P, Hu J, McConville J T, Johnston K P, Williams R O 3rd. Cryogenic liquids, nanoparticles, and microencapsulation. International Journal of Pharmaceutics, 2006, 324(1): 43–50CrossRefGoogle Scholar
  37. 37.
    Yildiz Y, Nalbant M. A review of cryogenic cooling in machining processes. International Journal of Machine Tools & Manufacture, 2008, 48(9): 947–964CrossRefGoogle Scholar
  38. 38.
    Hong S Y. Economical and ecological cryogenic machining. Journal of Manufacturing Science and Engineering, 2001, 123(2): 331–338CrossRefGoogle Scholar
  39. 39.
    Pacio J C, Dorao C A. A review on heat exchanger thermal hydraulic models for cryogenic applications. Cryogenics, 2011, 51(7): 366–379CrossRefGoogle Scholar
  40. 40.
    Gorla R S R. Rapid calculation procedure to determine the pressurizing period for stored cryogenic fluids. Applied Thermal Engineering, 2010, 30(14–15): 1997–2002CrossRefGoogle Scholar
  41. 41.
    Liu J. Development of new generation miniaturized chip-cooling device using metal with low melting point or its alloy as the cooling fluid. In: Proceedings of the International Conference on Micro Energy Systems. Sanya, China, 2005, 89–97Google Scholar
  42. 42.
    Smither R K. Liquid metal cooling of synchrotron optics. In: Society of Photo-Optical Instrumentation Engineers (SPIE) International Symposium on Optical Applied Science and Engineering, San Diego, USA, 1992, 116–134Google Scholar
  43. 43.
    Iida T, Guthrie R I L. The Physical Properties of Liquid Metals. Oxford: Clarendon Press, 1993Google Scholar
  44. 44.
    Shimoji M. Liquid Metals: An Introduction to the Physics and Chemistry of Metals in the Liquid State. New York: Academic Press, 1977Google Scholar
  45. 45.
    Karcher C, Kocourek V, Schulze D. Experimental investigations of electromagnetic instabilities of free surfaces in a liquid metal drop. In: International Scientific Colloquium Modelling for Electromagnetic Processing. Hannover, Germany, 2003, 105–110Google Scholar
  46. 46.
    Wikipedia. Na-K. 2013-05-26, http://en.wikipedia.org/wiki/Na-K
  47. 47.
    Bradhurst D H, Buchanan A S. Surface properties of liquid sodium and sodium potassium alloys in contact with metal-oxide surfaces. Australian Journal of Chemistry, 1961, 14(3): 397–408CrossRefGoogle Scholar
  48. 48.
    Chu K Y. Sodium loses its luster: A liquid metal that’s not really metallic. http://www.physorg.com/news110042534.Html
  49. 49.
    Wikipedia. Mercury (element). 2013-05-26, http://en.wikipedia.org/wiki/Mercury_(element)
  50. 50.
  51. 51.
    Norrby L J. Why is mercury liquid? Or, why do relativistic effects not get into chemistry textbooks? Journal of Chemical Education, 1991, 68(2): 110–113CrossRefGoogle Scholar
  52. 52.
    Lide D R. CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. 2005, 4.125–4.126Google Scholar
  53. 53.
  54. 54.
    Lovegrove R. Artemide Mercury Suspension. 2013-05-26, http://www.stardust.com/mercurylamp.html
  55. 55.
    Dental Amalgam P E I. 2013-05-26, http://www.gov.pe.ca/environment/dental-amalgam
  56. 56.
    Vargel C, Jacques M, Schmidt M P. Corrosion of Aluminium. Elsevier, 2004, 158Google Scholar
  57. 57.
    Anderson T J, Ansara I. The Ga-Sn (Gallium-Tin) system. Journal of Phase Equilibria, 1992, 13(2): 181–189CrossRefGoogle Scholar
  58. 58.
    Surmann P, Zeyat H. Voltammetric analysis using a self-renewable non-mercury electrode. Analytical and Bioanalytical Chemistry, 2005, 383(6): 1009–1013CrossRefGoogle Scholar
  59. 59.
    Ghoshal U, Grimm D, Ibrani S, Johnston C, Miner A. High-performance liquid metal cooling loops. In: Proceedings of the 21th IEEE Semiconductor Thermal Measurement and Management Symposium. San Jose, USA, 2005, 16–19Google Scholar
  60. 60.
    Liu G Y, Tan H D. Gallium and gallium compounds. In: Cyclopaedia of Chemical Engineering: Metallurgy and Metallic Materials. Beijing: Chemical Industry Press, 1994, 329–335(in Chinese)Google Scholar
  61. 61.
    Schormann M, Klimek K S, Hatop H, Varkey S P, Roesky H W, Lehmann C, Röpken C, Herbst-Irmer R, Noltemeyer M. Sodium-potassium alloy for the reduction of monoalkyl aluminum (III) compounds. Journal of Solid State Chemistry, 2001, 162(2): 225–236CrossRefGoogle Scholar
  62. 62.
    Li H Y, Liu J. Revolutionizing heat transport enhancement with liquid metals: Proposal of a new industry of water-free heat exchangers. Frontiers in Energy, 2011, 5(1): 20–42CrossRefGoogle Scholar
  63. 63.
    Kagan D N, Krechetova G A, Shpilrain E E. Elaborating and applying a new method of Gibbs energy determination for multicomponent alkali-metal coolants. Journal of Physics: Conference Series, 2008, 98(3): 032007Google Scholar
  64. 64.
  65. 65.
    Dyson R W, Penswick B, Robbie M, Geng S M. Investigation of liquid metal heat exchanger designs for fission surface power. In: Sixth International Energy Conversion Engineering Conference (IECEC). Cleveland, USA, 2008, 1–6Google Scholar
  66. 66.
    Klinkrad H. Space Debris: Models and Risk Analysis. Springer, 2006, 83Google Scholar
  67. 67.
    Xie K W. Study on the liquid metal cooling method for thermal management of computer. Dissertation for the Master’s Degree. Beijing: the Chinese Academy of Science, 2009: 58–76Google Scholar
  68. 68.
    Butler H. Danamics LMX Superleggera Cooler Review. 2013-05-28, http://www.bit-tech.net/hardware/cooling/2010/05/14/danamics-lmx-superleggera-review/1
  69. 69.
    Oshe RW. Handbook of Thermodynamic and Transport Properties of Alkali Metals. Oxford. UK: Blackwell Scientific Publications Ltd., 1985, 987Google Scholar
  70. 70.
    Wikipedia. Fusible alloy. 2013-05-28, http://en.wikipedia.org/wiki/Fusible_alloy#cite_note-0
  71. 71.
    Rinck E. Diagram of solidification and electric conductivityof the potassium-cesium alloys. Comptes Rendus Hebdomadaires Des Seances De L’Academie Des Science, 1936, 203: 255–257Google Scholar
  72. 72.
    Shmueli U, Steinberg V, Sverbilova T, Voronel A. New crystalline phases of an equiatomic K-Cs alloy at low temperature. Journal of Physics and Chemistry of Solids, 1981, 42(1): 19–22CrossRefGoogle Scholar
  73. 73.
    Simon A, Brumer W, Hillenkotter B, Kullmann H J. Novel compounds between potassium and cesium. Zeitschrift fur Anorganische und Allgemeine Chemie, 1976, 419: 253–274CrossRefGoogle Scholar
  74. 74.
    Ren X, Li C R, Du Z M, Guo C P. Thermodynamic assessments of six binary systems of alkali metals. Calphad, 2011, 35(3): 446–454CrossRefGoogle Scholar
  75. 75.
    Saunders N, Miodownik A P. CALPHAD (Calculation of Phase Diagrams)—A Comprehensive Guide. Elsevier Science Ltd., 1998Google Scholar
  76. 76.
    Kaufman L, Bernstein H. Computer Calculation of Phase Diagrams. New York: Academic Press, 1970Google Scholar
  77. 77.
  78. 78.
    Von Buch F, Lietzau J, Mordike B L, Pisch A, Schmid-Fetzer R. Development of Mg-Sc-Mn alloys. Materials Science and Engineering A, 1999, 263(1): 1–7CrossRefGoogle Scholar
  79. 79.
    Grobner J, Schmid-Fetzer R. Selection of promising quaternary candidates from Mg-Mn-(Sc, Gd, Y, Zr) for development of creep-resistant magnesium alloys. Journal of Alloys and Compounds, 2001, 320(2): 296–301CrossRefGoogle Scholar
  80. 80.
    Ohno M, Mirkovic D, Schmid-Fetzer R. Phase equilibria and solidification of Mg-rich Mg-Al-Zn alloys. Materials Science and Engineering A, 2006, 421(1–2): 328–337CrossRefGoogle Scholar
  81. 81.
    Tang R Z, Tian R Z. Binary eutectic phase diagram and the crystal structures of intermediate phase. Changsha: Zhongnan University Press, 2009, 736 (in Chinese)Google Scholar
  82. 82.
    Newhouse W H, Hagner A F, Devore G W. Structural control in the formation of gneisses and metamorphic rocks. Science, 1949, 109(2825): 168–169CrossRefGoogle Scholar
  83. 83.
    Wang L, Liu J. Discontinuous structural phase transition of liquid metal and alloys. Physics Letters [Part A], 2004, 328(2–3): 241–245CrossRefzbMATHGoogle Scholar
  84. 84.
    Zhang Y N, Wang L, Wang WM, Zhou J K. Structural transition of sheared-liquid metal in quenching state. Physics Letters [Part A], 2006, 355(2): 142–147CrossRefGoogle Scholar
  85. 85.
    Prabhu K N, Ravishankar B N. Effect of modification metal treatment on casting/chill interfacial heat transfer and electrical conductivity of Al-13% Si alloy. Materials Science and Engineering A, 2003, 360(1–2): 293–298CrossRefGoogle Scholar
  86. 86.
    Shim J H, Lee S C, Lee B J, Suh J Y, Cho Y W. Molecular dynamics simulation of the crystallization of a liquid gold nanoparticle. Journal of Crystal Growth, 2003, 250(3–4): 558–564CrossRefGoogle Scholar
  87. 87.
    Li H, Bian X F, Wang G H. Molecular dynamics computation of the liquid structure of Fe50Al50 alloy. Materials Science and Engineering A, 2001, 298(1–2): 245–250CrossRefGoogle Scholar
  88. 88.
    Chen X S, Zhao J J, Sun Q, Liu F, Wang G, Shen X C. Surface thermal stability of nickel clusters. Physica Status Solidi. B, Basic Research, 1996, 193(2): 355–361CrossRefGoogle Scholar
  89. 89.
    Hattori T, Kinoshita T, Taga N, Takasugi Y, Mori T, Tsuji K. Pressure and temperature dependence of the structure of liquid InSb. Physical Review B: Condensed Matter and Materials Physics, 2005, 72(6): 064205CrossRefGoogle Scholar
  90. 90.
    Turnbull D. The Subcooling of liquid metals. Journal of Applied Physics, 1949, 20(8): 817CrossRefGoogle Scholar
  91. 91.
    Li T, Lv Y G, Liu J, Zhou Y X. A powerful way of cooling computer chip using liquid metal with low melting point as the cooling fluid. Forschung im Ingenieurwesen, 2005, 70(4): 243–251CrossRefGoogle Scholar
  92. 92.
    Liu Z, Bando Y, Mitome M, Zhan J H. Unusual freezing and melting of gallium encapsulated in carbon nanotubes. Physical Review Letters, 2004, 93(9): 095504CrossRefGoogle Scholar
  93. 93.
    Platzek D. Liquid metal undercooled below its Curie temperature. Physical Review Letters, 1994, 65(13): 1723–1724Google Scholar
  94. 94.
    Wei B B, Yang G C, Zhon Y H. High undercooling and rapid solidification of Ni 32.5%Sn eutectic alloy. Acta Metallurgica et Materialia, 1991, 39(6): 1249–1258CrossRefGoogle Scholar
  95. 95.
    Liu R P, Volkraann T, Herlach D M. Undereooling and solidification of Si by electromagnetic levitation. Acta Materialia, 2001, 49(3): 439–444CrossRefGoogle Scholar
  96. 96.
    Hofmeister W H, Robinson M B, Bayuzick R J. Undercooling of pure metals in a containerless, microgravity environment. Applied Physics Letters, 1986, 49(20): 1342–1344CrossRefGoogle Scholar
  97. 97.
    Bosio L, Windsor C G. Observation of a metastability limit in liquid gallium. Physical Review Letters, 1975, 35(24): 1652–1655CrossRefGoogle Scholar
  98. 98.
    Cicco A D. Phase transitions in confined gallium droplets. Physical Review Letters, 1998, 81(14): 2942–2945CrossRefGoogle Scholar
  99. 99.
    Parravicini G B, Stella A, Ghignaa P, Spinolo G, Migliori A, d’Acapito F, Kofman R. Extreme undercooling (down to 90 K) of liquid metal nanoparticles. Applied Physics Letters, 2006, 89(3): 033123CrossRefGoogle Scholar
  100. 100.
    Taylor L T, Rancourt J. Non-toxic liquid metal composition for use as a mercury substitute. United States Patent No. 5,792, 236. 1998-08-11Google Scholar
  101. 101.
    Wu Y Y, Liu X F, Liu X J, Bian X F. Effect of Sb, Bi and Fe on melting points and microstructures of eutectic Cu-8P alloys. Chinese Journal of Nonferrous Metals, 2004, 14(7): 1206–1210Google Scholar
  102. 102.
  103. 103.
    LOCKHEED MARTIN. IRST sensor system. 2013-06-01, http://www.lockheedmartin.com/us/products/InfraredSearchTrack.html
  104. 104.
    NORTHROP GRUMMAN. 2008 photo archive.2013-06-01, http://132.228.182.15/media/photo/2008.html
  105. 105.
    Cortney. China Launches Beidou GPS System, Set to Rival US GPS. 2012-01-03, http://www.fieldtechnologies.com/chinalaunches-beidou-gps-system-set-to-rival-us-gps/

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Key Lab of Cryogenics and Beijing Key Lab of CryoBiomedical Engineering, Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
  2. 2.Department of Biomedical Engineering, School of MedicineTsinghua UniversityBeijingChina

Personalised recommendations