Skip to main content
Log in

Anion-exchange membrane direct ethanol fuel cells: Status and perspective

  • Feature Article
  • Published:
Frontiers of Energy and Power Engineering in China Aims and scope Submit manuscript

Abstract

Direct ethanol fuel cells (DEFCs) are a promising carbon-neutral and sustainable power source for portable, mobile, and stationary applications. However, conventional DEFCs that use acid proton-exchange membranes (typically Nafion type) and platinum-based catalysts exhibit low performance (i.e., the state-of-the-art peak power density is 79.5 mW/cm2 at 90°C). Anionexchange membrane (AEM) DEFCs that use low-cost AEM and non-platinum catalysts have recently been demonstrated to yield a much better performance (i.e., the state-of-the-art peak power density is 160 mW/cm2 at 80°C). This paper provides a comprehensive review of past research on the development of AEM DEFCs, including the aspects of catalysts, AEMs, and single-cell design and performance. Current and future research challenges are identified along with potential strategies to overcome them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prakash S, Kohl P A J. Performance of carbon dioxide vent for direct methanol fuel cells. Power Sources, 2009, 192(2): 429–434

    Article  Google Scholar 

  2. Song S Q, Tsiakaras P. Recent progress in direct ethanol proton exchange membrane fuel cells (DE-PEMFCs). Appl Catal. B: Environ, 2006, 63(3,4): 187–193

    Article  Google Scholar 

  3. Tu H C, Wang Y Y, Wan C C, Hsueh K L. Semi-empirical model to elucidate the effect of methanol crossover on direct methanol fuel cell. J Power Sources, 2006, 159(2): 1105–1114

    Article  Google Scholar 

  4. Schultz T, Krewer U, Vidakovic T, Pfafferodt M, Christov M, Sundmacher K. Systematic analysis of the direct methanol fuel cell. J. Appl Electrochem, 2007, 37(1): 111–119

    Article  Google Scholar 

  5. Scott K, Taama W M, Argyropoulos P, Sundmacher K. The impact of mass transport and methanol crossover on the direct methanol fuel cell. J Power Sources, 1999, 83(1,2): 204–216

    Article  Google Scholar 

  6. Chetty R, Kundu S, Xia W, Bron M, Schuhmann W, Chirila V, Brandl W, Reinecke T, Muhler M. PtRu nanoparticles supported on nitrogen-doped multiwalled carbon nanotubes as catalyst for methanol electrooxidation. Electrochimi Acta, 2009, 54(17): 4208–4215

    Article  Google Scholar 

  7. Zhao H B, Yang J, Li L, Li H, Wang J L, Zhang Y M. Effect of over-oxidation treatment of Pt-Co/polypyrrole-carbon nanotube catalysts on methanol oxidation. Int J Hydrogen Energy, 2009, 34(9): 3908–3914

    Article  Google Scholar 

  8. Song Y J, Han S B, Lee J M, Park K W. PtRu alloy nanostructure electrodes for methanol electrooxidation. J Alloy Compd, 2009, 473(1,2): 516–520

    Article  Google Scholar 

  9. Han J H, Liu H T. Real time measurements of methanol crossover in a DMFC. J Power Sources, 2007, 164(1): 166–173

    Article  Google Scholar 

  10. Heinzel A, Barragan V M. A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. J Power Sources, 1999, 84(1): 70–74

    Article  Google Scholar 

  11. Ren X, Springer T E, Gottesfeld S. Water and Methanol uptakes in nafion membranes and membrane effects on direct methanol cell performance. J Electrochem Soc, 2000, 147(1): 92–98

    Article  Google Scholar 

  12. Antolini E. Catalysts for direct ethanol fuel cells. J Power Sources, 2007, 170(1): 1–12

    Article  Google Scholar 

  13. Fujiwara N, Friedrich K A, Stimming U. Ethanol oxidation on PtRu electrodes studied by differential electrochemical mass spectrometry. J Electroanal Chem, 1999, 472(2): 120–125

    Article  Google Scholar 

  14. Pramanik H, Wragg A A, Basu S. Studies on operating parameters and cyclic voltammetry of a direct ethanol fuel cell. J Appl Electrochem, 2008, 38(9): 1321–1328

    Article  Google Scholar 

  15. Zhou W J, Li W Z, Song S Q, Zhou Z H, Jiang L H, Sun G Q, Xin Q, Poulianitis K, Kontou S, Tsiakaras P. Bi- and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells. J Power Sources, 2004, 131(1,2): 217–223

    Article  Google Scholar 

  16. Song S Q, Zhou W J, Zhou Z H, Jiang L H, Sun G Q, Xin Q, Leonditis V, Kontou S, Tsiakaras P. Pt-based catalysts for direct ethanol fuel cells Int J Hydrogen Energy, 2005, 30(9): 995–1001

    Article  Google Scholar 

  17. Colmenares L, Wang H, Yusys Z, Jiang L, Yan S, Sun G Q, Behm R J. Ethanol oxidation on novel, carbon supported Pt alloy catalysts-Model studies under defined diffusion conditions. Electrochim Acta, 2006, 52(1): 221–233

    Article  Google Scholar 

  18. Lamy C, Rousseau S, Belgsir E M, Coutanceau C, Léger J M, Recent progress in the direct ethanol fuel cell: development of new platinum-tin electrocatalysts. Electrochim Acta, 2004, 49(22,23): 3901–3908

    Article  Google Scholar 

  19. Bianchini C, Shen P K. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem Rev, 2009, 109(9): 4183–4206

    Article  Google Scholar 

  20. Antolini E, Gonzalez E R. Alkaline direct alcohol fuel cells, J Power Sources, 2010, 195(11): 3431–3450

    Article  Google Scholar 

  21. Varcoe J R, Slade R C T. Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells, 2005, 5(2): 187–200

    Article  Google Scholar 

  22. Yu E H, Scott K, Reeve R W. electrochemical reduction of oxygen on carbon supported pt and pt/ru fuel cell electrodes in alkaline solutions. Fuel Cells, 2003, 3(4): 169–176

    Article  Google Scholar 

  23. Xu J B, Zhao T S, Shen S Y, Li Y S. Stabilization of the palladium ethanol-oxidation electrocatalyst with alloyed gold Int J Hydrogen Energy, 2010, 35(13): 6490–6500

    Article  Google Scholar 

  24. Rao V, Hariyanto, Cremers C, Stimming U. Investigation of the ethanol electro-oxidation in alkaline membrane electrode assembly by differential electrochemical mass spectrometry. Fuel Cells, 2007, 7(5): 417–423

    Article  Google Scholar 

  25. Varcoe J R, Kizewski J P, Halepoto D M, Poynton S D, Slade R C T, Zhao F. Anion-Exchange Membranes. Encyclopedia of Electrochemical Power Sources, Amsterdam, 2009, 329–343

  26. Wang Y, Li L, Hu L, Zhuang L, Lu J T, Xu B Q. A feasibility analysis for alkaline membrane direct methanol fuel cell: thermodynamic disadvantages versus kinetic advantages. Electrochem Commun, 2003, 5(8): 662–666

    Article  Google Scholar 

  27. Yanagi H, Fukuta K. Anion Exchange Membrane and Ionomer for Alkaline Membrane Fuel Cells (AMFCs). ECS Trans, 2008, 16(2): 257–262

    Article  Google Scholar 

  28. Agel E, Bouet J, Fauvarque J F. Characterization and use of anionic membranes for alkaline fuel cells. J Power Sources, 2001, 101(2): 267–274

    Article  Google Scholar 

  29. Wan Y, Peppley B, Creber K A M, Bui V T, Halliop E. Quaternized-chitosan membranes for possible applications in alkaline fuel cells. J Power Sources, 2008, 185(1): 183–187

    Article  Google Scholar 

  30. Xu T W, Liu Z M, Li Y, Yang W H. Preparation and characterization of Type II anion exchange membranes from poly (2,6-dimethyl-1,4-phenylene oxide) (PPO). J Membr Sci, 2008, 320(1,2): 232–239

    Article  Google Scholar 

  31. Pandey A K, Goswami A, Sen D, Mazumder S, Childs R F. Formation and characterization of highly crosslinked anionexchange membranes. J Membr Sci, 2003, 217(1,2): 117–130

    Article  Google Scholar 

  32. Slade R C T, Varcoe J R. Investigations of conductivity in FEPbased radiation-grafted alkaline anion-exchange membranes. Solid State Ionics, 2005, 176(5,6): 585–597

    Article  Google Scholar 

  33. Varcoe J R, Slade R C T, Yee E L H, Poynton S D, Driscoll D J, Apperley D C. Poly(ethylene-co-tetrafluoroethylene)-derived radiation-grafted anion-exchange membrane with properties specifically tailored for application in metal-cation-free alkaline polymer electrolyte fuel cells. Chem Mater, 2007, 19(10): 2686–2693

    Article  Google Scholar 

  34. Varcoe J R, Slade R C T. An electron-beam-grafted ETFE alkaline anion-exchange membrane in metal-cation-free solid-state alkaline fuel cells. Electrochem Commun, 2006, 8(5): 839–843

    Article  Google Scholar 

  35. Grew K N, Chu D, Chiu W K S. Ionic equilibrium and transport in the alkaline anion exchange membrane. J. Electrochem Soc, 2010, 157(8): B1024–B1032

    Article  Google Scholar 

  36. Wan Y, Peppley B, Creber K A M, Bui V T. Anion-exchange membranes composed of quaternized-chitosan derivatives for alkaline fuel cells J Power Sources, 2010, 195(12): 3785–3793

    Article  Google Scholar 

  37. Lu S F, Pan J, Huang A B, Zhuang L, Lu J T. Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. PNAS, 2008, 105(52): 20611–20614

    Article  Google Scholar 

  38. Hibbs M R, Fujimoto C H, Cornelius C J. Synthesis and characterization of poly(phenylene)-based anion exchange membranes for alkaline fuel cells. Macromolecules, 2009, 42(21): 8316–8321

    Article  Google Scholar 

  39. Wang G G, Weng Y M, Chu D, Xie D, Chen R R. Preparation of alkaline anion exchange membranes based on functional poly(etherimide) polymers for potential fuel cell applications. J Membr Sci, 2009, 326(1): 4–8

    Article  Google Scholar 

  40. Xiong Y, Liu Q L, Zhang Q G, Zhu A M. Synthesis and characterization of cross-linked quaternized poly(vinyl alcohol)/chitosan composite anion exchange membranes for fuel cells. J Power Sources, 2008, 183(2): 447–453

    Article  Google Scholar 

  41. Wang E D, Zhao T S, Yang W W. Poly (vinyl alcohol)/3-(trimethylammonium) propyl-functionalized silica hybrid membranes for alkaline direct ethanol fuel cells Int J Hydrogen Energy, 2010, 35(5): 2183–2189

    Article  Google Scholar 

  42. Wu C M, Wu Y H, Luo J Y, Xu T W, Fu Y X. Anion exchange hybrid membranes from PVA and multi-alkoxy silicon copolymer tailored for diffusion dialysis process. J Membr Sci, 2010, 356(1,2): 96–104

    Article  Google Scholar 

  43. Yang C C, Chiu S J, Lee K T, Chien W C, Lin C T, Huang C A. Study of poly(vinyl alcohol)/titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell. J Power Sources, 2008, 184(1): 44–51

    Article  Google Scholar 

  44. Lei L, Wang Y X. Quaternized polyethersulfone Cardo anion exchange membranes for direct methanol alkaline fuel cells. J Membr Sci, 2005, 262(1,2): 1–4

    Google Scholar 

  45. Salmon E, Guinot S, Godet M, Fauvarque J F. Structural characterization of new poly(ethylene oxide)-based alkaline solid polymer electrolytes. J Appl Polym Sci, 1997, 65(3): 601–607

    Article  Google Scholar 

  46. Hou H Y, Sun G Q, He R H, Sun B Y, Jin W, Liu H, Xin Q. Alkali doped polybenzimidazole membrane for alkaline direct methanol fuel cell Int J Hydrogen Energy, 2008, 33(23): 7172–7176

    Google Scholar 

  47. Xiong Y, Liu Q L, Zeng Q H. Quaternized cardo polyetherketone anion exchange membrane for direct methanol alkaline fuel cells. J Power Sources, 2009, 193(2): 541–546

    Article  Google Scholar 

  48. Stoica D, Ogier L, Akrour L, Alloin F, Fauvarque J F. Anionic membrane based on polyepichlorhydrin matrix for alkaline fuel cell: Synthesis, physical and electrochemical properties. Electrochim Acta, 2007, 53(4): 1596–1603

    Article  Google Scholar 

  49. Wu L, Xu T W. Improving anion exchange membranes for DMAFCs by inter-crosslinking CPPO/BPPO blends. J Membr. Sci, 2008, 322(2): 286–292

    Article  Google Scholar 

  50. Varcoe J R, Beillard M, Halepoto D M, Kizewski J P, Poynton S D, Slade R C T. Membrane and Electrode Materials for Alkaline Membrane Fuel Cells. ECS Trans, 2008, 16(2): 1819–1834

    Article  Google Scholar 

  51. Park J S, Park S H, Yim S D, Yoon Y G, Lee W Y, Kim C S. Performance of solid alkaline fuel cells employing anion-exchange membranes J Power Sources, 2008, 178(2) 620–626

    Article  Google Scholar 

  52. Fukuta K, Inoue H, Watanabe S, Yanagi H. In-situ Observation of CO2 through the Self-purging in Alkaline Membrane Fuel Cell (AMFC). ECS Trans, 2009, 19(31): 23–27

    Article  Google Scholar 

  53. Adams L A, Poynton S D, Tamain C, Slade R C T, Varcoe J R. A carbon dioxide tolerant aqueous-electrolyte-free anion-exchange membrane alkaline fuel cell. ChemSusChem, 2008, 1(1,2): 79–81

    Article  Google Scholar 

  54. Matsui Y, Saito M, Tasaka A, Inaba M. Influence of carbon dioxide on the performance of anion-exchange membrane fuel cells. ECS Trans, 2010, 25(13) 105–110

    Article  Google Scholar 

  55. Einsla B R, Chempath S, Pratt L R, Boncella J M, Rau J, Macomber C, Pivovar B S. Stability of cations for anion exchange membrane fuel cells. ECS Trans, 2007, 11(1): 1173–1180

    Article  Google Scholar 

  56. Xiong Y, Liu Q L, Zhu A M, Huang S M, Zeng Q H. Performance of organic-inorganic hybrid anion-exchange membranes for alkaline direct methanol fuel cells. J Power Sources, 2009, 186(2): 328–333

    Article  Google Scholar 

  57. Wu Y H, Wu C M, Li Y, Xu T W, Fu Y X. PVA-silica anionexchange hybrid membranes prepared through a copolymer crosslinking agent. J Membr Sci, 2010, 350(1,2): 322–332

    Article  Google Scholar 

  58. Yang C C, Chiu S J, Chien W C, Chiu S S. Quaternized poly(vinyl alcohol)/alumina composite polymer membranes for alkaline direct methanol fuel cells. J Power Sources, 2010, 195(8): 2212–2219

    Article  Google Scholar 

  59. Yang C C. Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC. J Membr. Sci, 2007, 288(1,2): 51–60

    Article  Google Scholar 

  60. Wu Y H, Wu C M, Xu T W, Yu F, Fu Y X. Novel anion-exchange organic-inorganic hybrid membranes: Preparation and characterizations for potential use in fuel cells. J Membr Sci, 2008, 321(2): 299–308

    Article  Google Scholar 

  61. Varcoe J R, Slade R C T, Yee E L H, Poynton S D, Driscoll D J. Investigations into the ex situ methanol, ethanol and ethylene glycol permeabilities of alkaline polymer electrolyte membranes. J Power Sources, 2007, 173(1): 194–199

    Article  Google Scholar 

  62. Xing B, Savadogo O. Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI). Electrochem Commun, 2000, 2(10): 697–702

    Article  Google Scholar 

  63. Fu J, Qiao J L, Lv H, Ma J X, Yuan X Z, Wang H J. Alkali doped poly (vinyl alcohol) (PVA) for anion-exchange membrane fuel cells: Ionic conductivity, chemical stability and FT-IR characterizations. ECS Trans, 2010, 25(13): 15–23

    Article  Google Scholar 

  64. Leykin A Y, Shkrebko O A, Tarasevich M R. Ethanol crossover through alkali-doped polybenzimidazole membrane. J Membr Sci, 2009, 328(1,2): 86–89

    Article  Google Scholar 

  65. Hou H Y, Sun G Q, He R H, Wu Z M, Sun B Y. Alkali doped polybenzimidazole membrane for high performance alkaline direct ethanol fuel cell. J Power Sources, 2008, 182(1): 95–99

    Article  Google Scholar 

  66. Varcoe J R. Investigations of the ex situ ionic conductivities at 30°C of metal-cation-free quaternary ammonium alkaline anion-exchange membranes in static atmospheres of different relative humidities. Phys Chem Chem Phys, 2007, 9(12): 1479–1486

    Article  Google Scholar 

  67. Li Y S, Zhao T S, Yang W W. Measurements of water uptake and transport properties in anion-exchange membranes. Int J Hydrogen Energy, 2010, 35(11): 5656–5665

    Article  Google Scholar 

  68. Stoica D, Alloin F, Marais S, Langevin D, Chappey C, Judeinstein P. Polyepichlorydrine membrane for alkaline fuel cell: Sorption and conduction properties. J Phys Chem B, 2008, 112(39): 12338–12346

    Article  Google Scholar 

  69. Abuin G C, Nonjola P, Franceschini E A, Izraelevitch F H, Mathe M K, Corti H R. Characterization of an anionic-exchange membranes for direct methanol alkaline fuel cells Int J Hydrogen Energy, 2010, 35(11): 5849–5854

    Article  Google Scholar 

  70. Zawodzinski T A, Springer T E, Davey J, Jestel R, Lopez C, Valerio J, Gottesfeld S. A comparative study of water uptake by and transport through ionomeric fuel cell membranes. J Electrochem Soc, 1993, 140(7): 1981–1985

    Article  Google Scholar 

  71. Choi P, Datta R. Sorption in proton-exchange membranes. J Electrochem Soc, 2003, 150(12): E601–E607

    Article  Google Scholar 

  72. Colmati F, Antolini E, Gonzalez E R. Effect of temperature on the mechanism of ethanol oxidation on carbon supported Pt, PtRu and Pt3Sn electrocatalysts. J Power Sources, 2006, 157(1): 98–103

    Article  Google Scholar 

  73. Li H Q, Sun G Q, Cao L, Jiang L H, Xin Q. Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation. Electrochim Acta, 2007, 52(24): 6622–6629

    Article  Google Scholar 

  74. Shen Q M, Min Q H, Shi J J, Jiang L P, Zhang J R, Hou W H, Zhu J J. Morphology-controlled synthesis of palladium nanostructures by sonoelectrochemical method and their application in direct alcohol oxidation. J Phys Chem C, 2009, 113(4): 1267–1273

    Article  Google Scholar 

  75. Wang X G, Wang W M, Qi Z, Zhao C C, Ji H, Zhang Z H. High catalytic activity of ultrafine nanoporous palladium for electrooxidation of methanol, ethanol, and formic acid. Electrochem Commun, 2009, 11(10): 1896–1899

    Article  Google Scholar 

  76. Ksar F, Surendran G, Ramos L, Keita B, Nadjo L, Prouzet E, Beaunier P, Hagège A, Audonet F, Remita H. Palladium nanowires synthesized in hexagonal mesophases: application in ethanol electrooxidation. Chem Mater, 2009, 21(8): 1612–1617

    Article  Google Scholar 

  77. Xu C W, Shen P K, Liu Y L. Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide. J Power Sources, 2007, 164(2): 527–531

    Article  Google Scholar 

  78. Hu F P, Chen C L, Wang Z Y, Wei G Y. Mechanistic study of ethanol oxidation on Pd-NiO/C electrocatalyst. Electrochim Acta, 2006, 52(3): 1087–1091

    Article  Google Scholar 

  79. Chu D B, Wang J, Wang S X, Zha L G, He J G, Hou Y Y, Yan Y G, Lin H S, Tian Z W. High activity of Pd-In2O3/CNTs electrocatalyst for electro-oxidation of ethanol. Catal Commun, 2009, 10(6): 955–958

    Article  Google Scholar 

  80. He Q G, Chen W, Mukerjee S, Chen S W, Laufek F. Carbonsupported PdM (M = Au and Sn) nanocatalysts for the electrooxidation of ethanol in high pH media. J Power Sources, 2009, 187(2): 298–304

    Article  Google Scholar 

  81. Zhu L D, Zhao T S, Xu J B, Liang Z X. Preparation and characterization of carbon-supported sub-monolayer palladium decorated gold nanoparticles for the electro-oxidation of ethanol in alkaline media. J Power Sources, 2009, 187(1): 80–84

    Article  Google Scholar 

  82. Ksar F, Ramos L, Keita B, Nadjo L, Beaunier P, Remita H. bimetallic palladium - gold nanostructures: application in ethanol oxidation. Chem Mater, 2009, 21(15): 3677–3683

    Article  Google Scholar 

  83. Liu Z L, Zhao B, Guo C L, Sun Y J, Xu F G, Yang H B, Li Z. Novel hybrid electrocatalyst with enhanced performance in alkaline media: hollow Au/Pd core/shell nanostructures with a raspberry surface J Phys Chem C, 2009, 113(38): 16766–16711

    Article  Google Scholar 

  84. Nguyen S T, Law H M, Nguyen H T, Kristian N, Wang S, Chan S H, Wang X. Enhancement effect of Ag for Pd/C towards the ethanol electro-oxidation in alkaline media. Appl Catal B, 2009, 91(1,2): 507–515

    Google Scholar 

  85. Wang Y, Nguyen T S, Liu X W, Wang X. Novel palladium—lead (Pd-Pb/C) bimetallic catalysts for electrooxidation of ethanol in alkaline media. J Power Sources, 2010, 195(9): 2619–2622

    Article  Google Scholar 

  86. Chen Y G, Zhuang L, Lu J T. Non-Pt anode catalysts for alkaline direct alcohol fuel cells. Chin J Catal, 2007, 28(10): 870–874

    Article  Google Scholar 

  87. Jou L S, Chang J K, Twhang T J, Sun I W. Electrodeposition of palladium-copper films from1-ethyl-3-methylimidazoliumchloridetetrafluoroborate ionic liquid on indium tin oxide electrodes. J Electrochem Soc, 2009, 156(6): D193–D197

    Article  Google Scholar 

  88. Singh R N, Singh A, Anindita. Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT, and Ni for ethanol electro-oxidation in alkaline solutions. Carbon, 2009, 47(1): 271–278

    Article  Google Scholar 

  89. Shen S Y, Zhao T S, Xu J B, Li Y S. Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells. J Power Sources, 2010, 195(4): 1001–1006

    Article  Google Scholar 

  90. Qiu C C, Shang R, Y F Xie, Bu Y R, Li C Y, Ma H Y. Electrocatalytic activity of bimetallic Pd-Ni thin films towards the oxidation of methanol and ethanol. Mater Chem Phys, 2010, 120(2,3): 323–330

    Article  Google Scholar 

  91. Bambagioni V, Bianchini C, Filippi J, Oberhauser W, Marchionni A, Vizza F, Psaro R, Sordelli L, Foresti M L, Innocenti M. Ethanol oxidation on electrocatalysts obtained by spontaneous deposition of palladium onto nickel-zinc materials. ChemSusChem, 2009, 2(1): 99–112

    Article  Google Scholar 

  92. Zheng H T, Li Y L, Chen S X, Shen P K. Effect of support on the activity of Pd electrocatalyst for ethanol oxidation. J Power Sources, 2006, 163(1): 371–375

    Article  Google Scholar 

  93. Xu C W, Chen L Q, Shen P K, Liu Y L. Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media. Electrochem. Commun, 2007, 9(5): 997–1001

    Article  Google Scholar 

  94. Yuan D S, Xu C W, Liu Y L, Tan S Z, Wang X, Wei Z D, Shen P K. Synthesis of coin-like hollow carbon and performance as Pd catalyst support for methanol electrooxidation. Electrochem Commun, 2007, 9(10): 2473–2478

    Article  Google Scholar 

  95. Hu F P, Shen P K. Ethanol oxidation on hexagonal tungsten carbide single nanocrystal-supported Pd electrocatalyst. J Power Sources, 2007, 173(2): 877–881

    Article  MathSciNet  Google Scholar 

  96. Hu F P, Cui G F,Wei Z D, Shen P K. Improved kinetics of ethanol oxidation on Pd catalysts supported on tungsten carbides/carbon nanotubes Electrochem Commun, 2008, 10(9): 1303–1306

    Article  Google Scholar 

  97. Wang Z Y, Hu F P, Shen P K. Carbonized porous anodic alumina as electrocatalyst support for alcohol oxidation. Electrochem Commun, 2006, 8(11): 1764–1768

    Article  Google Scholar 

  98. Hu F P, Ding F W, Song S Q, Shen P K. Pd electrocatalyst supported on carbonized TiO2 nanotube for ethanol oxidation. J Power Sources, 2006, 163(1): 415–419

    Article  Google Scholar 

  99. El-Shafei A A, Elhafeez A M, Mostafa H A. Ethanol oxidation at metal-zeolite-modified electrodes in alkaline medium. Part 2: palladium-zeolite-modified graphite electrode. J Solid State Electrochem, 2010, 14(2): 185–190

    Article  Google Scholar 

  100. Pandey R K, Lakshminarayanan V. Enhanced electrocatalytic activity of Pd-Dispersed 3,4-polyethylenedioxythiophene film in hydrogen evolution and ethanol electro-oxidation reactions. J Phys Chem C, 2010, 114(18): 8507–8514

    Article  Google Scholar 

  101. Pandey R K, Lakshminarayanan V. Electro-oxidation of formic acid, methanol, and ethanol on electrodeposited Pd-polyaniline nanofiber films in acidic and alkaline medium. J Phys Chem C, 2009, 113(52): 21596–21603

    Article  Google Scholar 

  102. Su L, Jia W Z, Schempf A, Ding Y, Lei Y. free-standing palladium/polyamide 6 nanofibers for electrooxidation of alcohols in alkaline medium. J Phys Chem C, 2009, 113(36): 16174–16180

    Article  Google Scholar 

  103. Zhou W J, Song S Q, Li W Z, Sun G Q, Xin Q, Kontou S, Poulianitis K, Tsiakaras P. Pt-based anode catalysts for direct ethanol fuel cells. Solid State Ionics, 2004, 175(1–4): 797–803

    Article  Google Scholar 

  104. Mann J, Yao N, Bocarsly A B. Characterization and analysis of new catalysts for a direct ethanol fuel cell. Langmuir, 2006, 22(25): 10432–10436

    Article  Google Scholar 

  105. Liang Z X, Zhao T S, Xu J B, Zhu L D. Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochim Acta, 2009, 54(8): 2203–2208

    Article  Google Scholar 

  106. Cui G F, Song S Q, Shen P K, Kowal A, Bianchini C. First-principles considerations on catalytic activity of Pd toward ethanol oxidation. J Phys Chem C, 2009, 113(35): 15639–15642

    Article  Google Scholar 

  107. Fang X, Wang L Q, Shen P K, Cui G F, Bianchini C. An in situ Fourier transform infrared spectroelectrochemical study on ethanol electrooxidation on Pd in alkaline solution. J Power Sources, 2010, 195(5): 1375–1378

    Article  Google Scholar 

  108. Zhou Z Y, Wang Q, Lin J L, Tian N, Sun S G. In situ FTIR spectroscopic studies of electrooxidation of ethanol on Pd electrode in alkaline media. Electrochim Acta, 2010 (in press)

  109. Bambagioni V, Bianchini C, Marchionni A, Filippi J, Vizza F, Teddy J, Serp P, Zhiani M. Pd and Pt-Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol = methanol, ethanol, glycerol). J Power Sources, 2009, 190(2): 241–251

    Article  Google Scholar 

  110. Markovic N, Gasteiger H. Kinetics of oxygen reduction on Pt(Hkl) electrodes-Implications for the crystallite size effect with supported pt electrocatalysts. J Electrochem Soc, 1997, 144(5): 1591–1597

    Article  Google Scholar 

  111. Blizanac B B, Ross P N, Markovic N M. Oxygen reduction on silver low-index single-crystal surfaces in alkaline solution: Rotating ring diskAg(hkl) studies. J Phys Chem B, 2006, 110(10): 4735–4741

    Article  Google Scholar 

  112. Blizanac B B, Ross P N, Markovic N M. Oxygen electroreduction on Ag(1 1 1): The pH effect. Electrochim Acta, 2007, 52(6): 2264–2271

    Article  Google Scholar 

  113. Geniès L, Faure R, Durand R. Electrochemical reduction of oxygen on platinum nanoparticles in alkaline media. Electrochim Acta, 1998, 44(8,9): 1317–1327

    Article  Google Scholar 

  114. Xu J B, Zhao T S, Li Y S, Yang W W. Synthesis and characterization of the Au-modified Pd cathode catalyst for alkaline direct ethanol fuel cells. Int J Hydrogen Energy, 2010, 35(18): 9693–9700

    Article  Google Scholar 

  115. Xiong L F, Manthiram A. Influence of atomic ordering on the electrocatalytic activity of Pt-Co alloys in alkaline electrolyte and proton exchange membrane fuel cells J Mater Chem, 2004, 14: 1454–1460

    Article  Google Scholar 

  116. Demarconnay L, Coutanceau C, Léger J M. Study of the oxygen electroreduction at nanostructured PtBi catalysts in alkaline medium. Electrochim Acta, 2008, 53(8): 3232–3241

    Article  Google Scholar 

  117. Gülzow E, Wagner N, Schulze M. preparation of gas diffusion electrodes with silver catalysts for alkaline fuel cells. Fuel Cells, 2003, 3(1,2): 67–72

    Article  Google Scholar 

  118. Demarconnay L, Coutanceau C, Léger J M. Electroreduction of dioxygen (ORR) in alkaline medium on Ag/C and Pt/C nanostructured catalysts - effect of the presence of methanol. Electrochim Acta, 2004, 49(25): 4513–4521

    Article  Google Scholar 

  119. Guo J S, Hsu A, Chu D, Chen R R. Improving oxygen reduction reaction activities on carbon-supported Ag nanoparticles in alkaline solutions. J Phys Chem C, 2010, 114(10): 4324–4330

    Article  Google Scholar 

  120. Mao L Q, Zhang D, Sotomura T, Nakatsu K. Mechanistic study of the reduction of oxygen in air electrode with manganese oxides as electrocatalysts. Electrochim Acta, 2003, 48(8): 1015–1021

    Article  Google Scholar 

  121. Calegaro M L, Lima F H B, Ticianelli E A. Oxygen reduction reaction on nanosized manganese oxide particles dispersed on carbon in alkaline solutions, J Power Sources, 2006, 158(1): 735–739

    Article  Google Scholar 

  122. Fukuda M, Iida C, Nakayama M. One-step through-mask electrodeposition of a porous structure composed of manganese oxide nanosheets with electrocatalytic activity for oxygen reduction. Mater Res Bull, 2009, 44(6): 1323–1327

    Article  Google Scholar 

  123. Hermann V, Dutriat D, Müller S, Comninellis C. Mechanistic Studies of oxygen reduction at La0.6Ca0.4CoO3-activated carbon electrodes in a channel flow cell. Electrochim. Acta, 2000, 46(2,3): 365–372

    Article  Google Scholar 

  124. Nissinen T, Valo T, Gasik M, Rantanen J, Lampinen M. Microwave synthesis of catalyst spinel MnCo2O4 for alkaline fuel cell. J Power Sources, 2002, 106(1,2): 109–115

    Article  Google Scholar 

  125. Chang Y M, Wu P W, Eu C Y, Hsieh Y C. Synthesis of La0.6Ca0.4Co0.8Ir0.2O3 perovskite for bi-functional catalysis in an alkaline electrolyte. J Power Sources, 2009, 189(2): 1003–1007

    Article  Google Scholar 

  126. Restovic A, Ríos E, Barbato S, Ortiz J, Gautier J L. Oxygen reduction in alkaline medium at thin MnxCo3 - x O4 (0⩽x⩽1) spinel films prepared by spray pyrolysis. Effect of oxide cation composition on the reaction kinetics. J Electroanal Chem, 2002, 522(2): 141–151

    Article  Google Scholar 

  127. Koninck M D, Poirier S C, Marsan B. Electrochemical characterization for the oxygen reduction reaction. J Electrochem Soc, 2007, 154(4): A381–A388

    Article  Google Scholar 

  128. Ríos E, Abarca S, Daccarett P, Cong H N, Martel D, Marco J F, Gancedo J R, Gautier J L. Electrocatalysis of oxygen reduction on CuxMn3 - x O4 (1.<x<1.4) spinel particles/polypyrrol composite electrodes. Int J Hydrogen Energy, 2008, 33(19): 4945–4954

    Article  Google Scholar 

  129. Gojkovic S L, Gupta S, Savinell R F. Heat-treated iron(III) tetramethoxyphenyl porphyrin chloride supported on high-area carbon as an electrocatalyst for oxygen reduction: Part II. Kinetics of oxygen reduction. J Electroanal Chem, 1999, 462(1): 63–72

    Article  Google Scholar 

  130. Mocchi C, Trasatti S. Composite electrocatalysts for molecular O2 reduction in electrochemical power sources. J Mol Catal A, 2003, 204–205: 713–720

    Google Scholar 

  131. Tributsch H, Koslowski U I, Dorbandt I. Experimental and theoretical modeling of Fe-, Co-, Cu-, Mn-based electrocatalysts for oxygen reduction. Electrochim Acta, 2008, 53(5): 2198–2209

    Article  Google Scholar 

  132. Lima F H B, Ticianelli E A. Oxygen electrocatalysis on ultra-thin porous coating rotating ring/disk platinum and platinum-cobalt electrodes in alkaline media. Electrochim Acta, 2004, 49(24): 4091–4099

    Article  Google Scholar 

  133. Lima F H B, Zhang J, Shao M H, Sasaki K, Vukmirovic M B, Ticianelli E A, Adzic R R. Catalytic activity-d-band center correlation for the O2 reduction reaction on platinum in alkaline solutions. J Phys Chem C, 2007, 111(1): 404–410

    Article  Google Scholar 

  134. Coutanceau C, Demarconnay L, Lamy C, Léger J M. Development of electrocatalysts for solid alkaline fuel cell (SAFC). J Power Sources, 2006, 156(1): 14–19

    Article  Google Scholar 

  135. Chatenet M, Bultel L G, Aurousseau M, Durand R, Andolfatto F. Oxygen reduction on silver catalysts in solutions containing various concentrations of sodium hydroxide-comparison with platinum. J Appl Electrochem, 2002, 32(10): 1131–1140

    Article  Google Scholar 

  136. Furuva N, Aikawa H. Comparative study of oxygen cathodes loaded with Ag and Pt catalysts in chlor-alkali membrane cells. Electrochim Acta, 2000, 45(25,26): 4251–4256

    Article  Google Scholar 

  137. Wagner N, Schulze M, Gülzow E. Long term investigations of silver cathodes for alkaline fuel cells. J Power Sources, 2004, 127(1,2): 264–272

    Article  Google Scholar 

  138. Okajima K, Nabekura K, Kondoh T, Sudoh M. Degradation evaluation of gas-diffusion electrodes for oxygen-depolarization in chloralkali membrane cell. J Electrochem Soc, 2005, 152(8): D117–D120

    Article  Google Scholar 

  139. Lee H K, Shim J P, Shim M J, Kim S W, Lee J S. Oxygen reduction behavior with silver alloy catalyst in alkaline media. Mater Chem Phys, 1996, 45(3): 238–242

    Article  Google Scholar 

  140. Lima F H B, Castro J F R, Ticianelli E A. Silver-cobalt bimetallic particles for oxygen reduction in alkaline media. J Power Sources, 2006, 161(2): 806–812

    Article  Google Scholar 

  141. Meng H, Shen P K. Novel Pt-free catalyst for oxygen electroreduction. Electrochem Commun, 2006, 8(4): 588–594

    Article  Google Scholar 

  142. Li Y S, Zhao T S, Liang Z X. Performance of alkaline electrolyte-membrane-based direct ethanol fuel cells. J Power Sources, 2009, 187(2): 387–392

    Article  Google Scholar 

  143. Fujiwara N, Siroma Z, Yamazaki S, Ioroi T, Senoh H, Yasuda K. Direct ethanol fuel cells using an anion exchange membrane. J Power Sources, 2008, 185(2): 621–626

    Article  Google Scholar 

  144. Bianchini C, Bambagioni V, Filippi J, Marchionni A, Vizza F, Bert P, Tampucci A. Selective oxidation of ethanol to acetic acid in highly efficient polymer electrolyte membrane-direct ethanol fuel cells. Electrochem Commun, 2009, 11(5): 1077–1080

    Article  Google Scholar 

  145. Jiang L H, Sun G Q, Sun S G, Liu J G, Tang S H, Li H Q, Zhou B, Xin Q. Structure and chemical composition of supported Pt-Sn electrocatalysts for ethanol oxidation. Electrochim Acta, 2005, 50(27): 5384–5389

    Article  Google Scholar 

  146. Modestov A D, Tarasevich M R, Leykin A Y, Filimonov V Y. MEA for alkaline direct ethanol fuel cell with alkali doped PBI membrane and non-platinum electrodes. J Power Sources, 2009, 188(2): 502–506

    Article  Google Scholar 

  147. Li Y S, Zhao T S, Liang Z X. Effect of polymer binders in anode catalyst layer on performance of alkaline direct ethanol fuel cells. J Power Sources, 2009, 190(2): 223–229

    Article  Google Scholar 

  148. Miyazaki K, Abe T, Nishio K, Nakanishi H, Ogumi Z. Use of layered double hydroxides to improve the triple phase boundary in anion-exchange membrane fuel cells. J Power Sources, 2010, 195(19): 6500–6503

    Article  Google Scholar 

  149. Li Y S, Zhao T S, Chen R. Cathode flooding behaviour in alkaline direct ethanol fuel cells. J Power Sources, 2011, 196(1): 133–139

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.S. Zhao.

Additional information

T.S. Zhao is a Professor of Mechanical Engineering and the Director of Center for Sustainable Energy Technology at the Hong Kong University of Science & Technology (HKSUT). As an internationally renowned expert in energy technology, he presently focuses his research on fuel cells, multi-scale multiphase heat/mass transport with electrochemical reactions, and computational modeling. As of October 2010, he has published more than 150 papers in prestigious journals in the fields of energy science and engineering with SCI citations of more than 2850 times and H-index of 30. He has received a number of recognitions for his research and teaching, including the Bechtel Foundation Engineering Teaching Excellence Award at HKUST in 2004, the Overseas Distinguished Young Scholars Award by National Natural Science Foundation of China in 2006, Fellow of the American Society of Mechanical Engineers (ASME) in 2007, the Croucher Senior Fellowship award from the Croucher Foundation in 2008, and the Yangtze River Chair Professorship by the Chinese Ministry of Education in 2010. In the international community, Prof. Zhao serves as Editor-in-Chief of Advances in Fuel Cells, Series Editor, Energy & Environment (Royal Society of Chemistry), Asian Regional Editor of Applied Thermal Engineering, and as a member of the Editorial Board for more than 18 International Journals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, T., Li, Y. & Shen, S. Anion-exchange membrane direct ethanol fuel cells: Status and perspective. Front. Energy Power Eng. China 4, 443–458 (2010). https://doi.org/10.1007/s11708-010-0127-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-010-0127-5

Keywords

Navigation