Skip to main content
Log in

First Asian fossil record of Platydictya (Amblystegiaceae) from the lower Miocene and its paleoenvironmental significance

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

Mosses form a diverse land plant group in modern vegetation but have rarely showed up in the fossil record compared with vascular plants. Here, we report an extraordinarily-preserved early Miocene moss fossil from the lower Laoliangdi Formation in the Pingzhuang Coal Mine in Chifeng, Inner Mongolia Autonomous Region, northern China. Although lacking rhizoids and most reproductive organs, the well-preserved fossil allows us to assign it to Platydictya cf. jungermannioides (Amblystegiaceae) based upon its detailed gross and micromorphology. The diagnostic characteristics include a small-sized body with slender stems bearing spirally arranged ovate-lanceolate leaves that lack costae. Leaf margins are mostly partly entire and partly dentate, a few dentate, and rarely completely entire. It represents the first fossil record of Platydictya in Asia. The specific living microenvironment of the extant P. jungermannioides enriched our understanding of the early Miocene environment that was previously based upon vascular plant fossils and sedimentary lithofacies in the area. Our early Miocene Platydictya cf. jungermannioides fossil lived in a warm and humid lush forest with a dense understory that received adequate water supplies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amaral P G C, Bernardes de Oliveira M, Ricardi-Branco F, Broutin J (2004). Presencia de Bryopsida fértil en los niveles Westfalianos del subgrup Itarar, Cuenca de Paraná, Brasil. Trop Bryol, 25: 101–110

    Google Scholar 

  • Baker R G, Bettis E A III, Horton D G (1993). Late Wisconsinan–early Holocene riparian paleoenvironment insoutheastern Iowa. Geol Soc Am Bull, 105(2): 206–212

    Google Scholar 

  • Bennike O, Abrahamsen N, Bak M, Israelson C, Konradi P, Matthiessen J, Witkowski A (2002). A multi-proxy study of Pliocene sediments from Île de France, North-East Greenland. Palaeogeogr Palaeoclimatol Palaeoecol, 186(1–2): 1–23

    Google Scholar 

  • Bittmann F (2007). Reconstruction of the Allerod vegetation of the Neuwied Basin, western Germany, and its surroundings at 12,900cal B.P. Veg Hist Archaeobot, 16(2–3): 139–156

    Google Scholar 

  • Blöcher R, Frahm J P (2002). A comparison of the moss floras of Chile and New Zealand. Trop Bryol, 21: 81–92

    Google Scholar 

  • Bomfleur B, Klymiuk A A, Taylor E L, Taylor T N, Gulbranson E L, Isbell J L (2014). Diverse bryophyte mesofossils from the Triassic of Antarctica. Lethaia, 47(1): 120–132

    Google Scholar 

  • Crum H A, Anderson L E (1981). Mosses of Eastern North America. II. New York: Columbia University Press, 916–1105

    Google Scholar 

  • Delgadillo C (2009). Floristic corridors for moss distribution across the Neovolcanic Belt of Mexico, IV, The Toluca and Chalco corridors. J Bryol, 31(1): 30–40

    Google Scholar 

  • Elverland E, Vorren K D (2008). 7500 yr of mire-pool development and the history of Pinus sylvestris (L.) in Sub Arctic coastal Norway. Rev Palaeobot Palynol, 150(1–4): 48–58

    Google Scholar 

  • Frahm J P, Newton A E (2005). A new contribution to the moss flora of dominican amber. Bryologist, 108(4): 526–536

    Google Scholar 

  • Frahm J P (2004). A new contribution to the moss flora of Baltic and Saxon amber. Rev Palaeobot Palynol, 129(1–2): 81–101

    Google Scholar 

  • Goetcheus V G, Birks H H (2001). Full-glacial upland tundra vegetation preserved under tephra in the Beringia National Park, Seward Peninsula, Alaska. Quat Sci Rev, 20(1–3): 135–147

    Google Scholar 

  • Goffinet B, Shaw A J (2009). Bryophyte Biology. Second Edition. Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo: Cambridge University Press

    Google Scholar 

  • Guo C Q, Yao J X, Wu P C, Li C S (2013). Early Miocene mosses from Weichang, North China, and their environmental significance. Acta Geol Sin (English Edition), 87(6): 1508–1519

    Google Scholar 

  • Guo C Q, Li Y, Wu P C, Yao J X (2016). Phytogeographic significance of early Miocene mosses from Weichang, Hebei province. Geological Bulletin of China, 35(12): 1976–1984 (in Chinese)

    Google Scholar 

  • Harris S J (2008). Traditional uses and folk classification of Bryophytes. Bryologist, 111(2): 169–217

    Google Scholar 

  • Hu R L, Wang Y F (1994). Bryography of China (VII). Beijing: Science Press, 18–21

    Google Scholar 

  • Huttunen S, Ignatov M S, Quandt D, Hedenäs L (2013). Phylogenetic position and delimitation of the moss family Plagiotheciaceae in the order Hypnales. Botanical Journal of the Linnean Society, 117(2): 330–353

    Google Scholar 

  • Ignatov M S, Maslova E V (2021). Fossil mosses: what do they tell us about moss evolution? Bryophyt Divers Evol, 43(1): 72–97

    Google Scholar 

  • Janssens J A, Zander R H (1980). Leptodontium flexifolium and Pseudocrossidium revolutum as 60000-year-old subfossils from the Yukon Territory, Canada. Bryologist, 83(4): 486–496

    Google Scholar 

  • Janssens J A (1983). Past and present record of Drepanocladus crassicostatus sp. nov. (Musci: Amblystegiaceae) and the status of D. trichophyllus in North America. Bryologist, 86(1): 44–53

    Google Scholar 

  • Janssens J A, Glaser P H (1986). The bryophyte flora and major peat-forming mosses at Red Lake peatland, Minnesota. Can J Bot, 64(2): 427–442

    Google Scholar 

  • Kanda H (1976). A revision of the family Amblystegiaceae of Japan. II. J Sci Hiroshima U, Series B, Div. 2 (Botany), 16: 47–119

    Google Scholar 

  • Kokfelt U, Reuss N, Struyf E, Sonesson M, Rundgren M, Skog G, Rosén P, Hammarlund D (2010). Wetland development, permafrost history and nutrient cycling inferred from late Holocene peat and lake sediment records in subarctic Sweden. J Paleolimnol, 44(1): 327–342

    Google Scholar 

  • Kuder T, Kruge M A (1998). Preservation of biomolecules in sub-fossil plants from raised peat bogs—a potential paleoenvironmental proxy. Org Geochem, 29(5–7): 1355–1368

    Google Scholar 

  • Van der Linden M, Barke J, Vickery E, Charman D J, Van Geel B (2008). Late Holocene human impact and climate change recorded in a North Swedish peat deposit. Palaeogeogr Palaeoclimatol Palaeoecol, 258(1–2): 1–27

    Google Scholar 

  • Matthews J V Jr, Ovenden L E (1990). Late Tertiary plant macrofossils from localities inarctic/subarctic North America: a review of the data. Arctic, 43(4): 384–392

    Google Scholar 

  • Miller N G (1980a). Quaternary fossil bryophytes in North America: catalog and annotated bibliography. J Hattori Bot Lab, 47: 1–34

    Google Scholar 

  • Miller N G (1980b). Mosses as paleoecological indicators of lateglacial terrestrial environments: some North American studies. Bull Torrey Bot Club, 107(3): 373–391

    Google Scholar 

  • Miller N G (1984). Tertiary and Quaternary fossils. In: Schuster R M, ed. New Manual of Bryology, Nichinan, Japan: The Hattori Botanical Laboratory, 2: 1194–1232

    Google Scholar 

  • Moisan P, Voigt S, Schneider J W, Kerp H (2012). New fossil bryophytes from the Triassic Madygen Lagerstätte (SW Kyrgyzstan). Rev Palaeobot Palynol, 187: 29–37

    Google Scholar 

  • Newton A E, Wikstrom N, Bell N, Forrest L L, Ignatov M S (2007). Dating the diversification of the pleurocarpous mosses. In: Newton A E, Tangney R S, eds. Pleurocarpous Mosses: Systematics and Evolution. Boca Raton: CRC Press, 337–366

    Google Scholar 

  • Noguchi A (1991a). Illustrated moss flora of Japan. Japan: Hattori Botanical Laboratory. Part 4: 886–1012

    Google Scholar 

  • Noguchi A (1991b). Illustrated moss flora of Japan. Japan: Hattori Botanical Laboratory. Part 5: 1013–1069

    Google Scholar 

  • Oostendorp C (1987). The Bryophytes of the Palaeozoic and the Mesozoic. In: BryophytorumBiblotheca, Band 34. Berlin & Stuttgart: J. Cramer, 112

    Google Scholar 

  • Ovenden L (1993). Late Tertiary mosses of Ellesmere Island. Rev Palaeobot Palynol, 79(1–2): 121–131

    Google Scholar 

  • Övestedal D O, Aarseth I (1975). Bryophytes from Late Weichselian sedimentsat Vinnes, western Norway. Lindbergia, 3: 61–68

    Google Scholar 

  • Reyes A V, Jensen B J L, Zazula G D, Ager T A, Kuzmina S, La Farge C L, Froese D G (2010). A late-Middle Pleistocene (Marine Isotope Stage 6) vegetated surface buried by Old Crow tephra at the Palisades, interior Alaska. Quat Sci Rev, 29(5–6): 801–811

    Google Scholar 

  • Richard Z (2017). Flora of North America, Vol. 28. London: Oxford University Press, 263–282

    Google Scholar 

  • Satake K, Oyagi A, Iwao Y (1995). Natural acidification of lakes and rivers in Japan: the ecosystem of Lake Usoriko (pH 3.4–3.8). Water Air Soil Pollut, 85: 511–516

    Google Scholar 

  • Shang P, Jin J H, Sun D J, Mu J (2001). Early Miocene flora from Pingzhuang Basin of Inner Mongolia and its paleoenvironment. J Sun Yat-sen U (Nat Mater Sci Ed), 40(5): 108–112 (in Chinese)

    Google Scholar 

  • Shelton G W K, Stockey R A, Rothwell G W, Tomescu A M F (2015). Exploring the fossil history of pleurocarpous mosses: Tricostaceae fam. nov. from the Cretaceous of Vancouver Island, Canada. Am J Bot, 102(11): 1883–1900

    Google Scholar 

  • Tao J R, Yang J J, Wang Y F (1994). Miocene wood fossils and paleoclimate significance in Inner Mongolia. Acta Botanica Yunnanica, 16(2): 111–116

    Google Scholar 

  • Thompson W B, Griggs C B, Miller N G, Nelson R E, Weddle T K, Kilian T M (2011). Associated terrestrial and marine fossils in the late-glacial Presumpscot Formation, southern Maine, USA, and the marine reservoir effect on radiocarbon ages. Quat Res, 75(3): 552–565

    Google Scholar 

  • Vitt D H (1984). Classification of the Bryopsida. In: Schuster R M, ed. New Manual of Bryology, 696–759

  • Wu Y H, Gao C, Cao T (2005). Family Amblystegiaceae. In: Hu R L, Wang Y F, eds. Flora Bryophytorum Sinicorum. Vol. 7. Hypnobryales. Beijing: Science Press, 1–81

    Google Scholar 

  • Yan J F, Wang Y L, Tan Q Y, Yu Q (2008). Sequence stratigraphy and coal accumulation in Pingzhuang Basin, Inner Mongolia. Coal Geology & Exploration, 36(1): 9–13 (in Chinese)

    Google Scholar 

  • Yang R D, Mao J R, Zhang W H, Jiang L J, Gao H (2004). Bryophytelike fossil (Parafunaria sinensis) from Early-Middle Cambrian Kaili Formation in Guizhou Province, China. Acta Bot Sin, 46(2): 180–185

    Google Scholar 

  • Yu L L, Chen L Y, Guo Z F and Ma Y J (2009). Coal-bearing property assessment and coal looking prediction in mine area periphery and deep part, Pingzhuang Coalfield. Coal Geology of China, 21(4): 20–22, 34 (in Chinese)

    Google Scholar 

  • Zazula G D, Froese D G, Elias S A, Kuzmina S, La Farge C L, Reyes A V, Sanborn R T, Schweger C E, Scott Smith C A, Mathewes R W (2006). Vegetation buried under Dawson tephra (25300 14C years BP) and locally diverse late Pleistocene paleoenvironments of Goldbottom Creek, Yukon., Canada. Palaeogeogr Palaeoclimatol Palaeoecol, 242(3–4): 253–286

    Google Scholar 

  • Zhang M L (2008). Studies on Taxonomy and Flora of Amblystegiaceae (Musci) in Inner Mongolia, China. Dissertation for Master’s Degree. Hohhot: Inner Mongolia University

    Google Scholar 

  • Zhang Z C (1986). Tertiary fossil plants from Pingzhuang of Ju’ Ud league, Nei Mongol. Bulletin of Shenyang Institute Geology and Mineral Resources, Chinese Academy Geol Sci, 14: 117–124 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grant Nos. 41872017 and 42072015); the Fundamental Research Funds for the Central Universities, CHD (Nos. 300102272206, 300102272901, 300102271402, and 300102262903); the Foundation of State Key Laboratory of Palaeobiology and Stratigraphy (Nanjing Institute of Geology and Palaeontology, CAS) (Nos. 183125 and 20172106); the Natural Science Basic Research Program in Shaanxi Province of China (No. 2023-JC-YB-223), Chang’an University Students’ innovation and entrepreneurship training program (No. G202210710054). We are grateful to two anonymous reviewers for constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Xiao, L., Li, Y. et al. First Asian fossil record of Platydictya (Amblystegiaceae) from the lower Miocene and its paleoenvironmental significance. Front. Earth Sci. 17, 351–360 (2023). https://doi.org/10.1007/s11707-022-1037-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-022-1037-7

Keywords

Navigation