Skip to main content
Log in

Development of the DayCent-Photo model and integration of variable photosynthetic capacity

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

We integrated a photosynthetic sub-model into the daily Century model (DayCent) to improve the estimations of seasonal changes in carbon fluxes at the Niwot Ridge LTER site and the Harvard forest LTER site (DayCent-Photo). The photosynthetic sub-model, adapted from the SIPNET/PnET family of models, includes solar radiation and vapor pressure deficit controls on production, as well as temperature and water stress terms. A key feature we added to the base photosynthetic equations is the addition of a variable maximum net photosynthetic rate (Amax). We optimized the parameters controlling photosynthesis using a variation of the Metropolis-Hastings algorithm along with data-assimilation techniques. The model was optimized and validated against observed net ecosystem exchange (NEE) and estimated gross primary production (GPP) and ecosystem respiration (RESP) values for AmeriFlux sites at Niwot Ridge and Harvard forest. The inclusion of a variable Amax rate greatly improved model performance (NEE RMSE = 0.63 gC·m–2, AIC = 2099) versus a version with a single Amax parameter (NEE RMSE = 0.74 gC·m–2, AIC = 3724). DayCent-Photo was able to capture the inter-annual and seasonal flux patterns for NEE, GPP, ecosystem respiration (RESP), and daily actual evapotranspiration (AET), but tended to overestimate yearly NEE uptake. The DayCent-Photo model has been successfully set up to simulate daily NEE, GPP, RESP, and AET for deciduous forest, conifer forests, and grassland systems in the US using AmeriFlux data sets and has recently been improved to include the impact of UV radiation surface litter decay (DayCent-UV). The simulated influence of a variable Amax rate suggests a need for further studies on the process controls affecting the seasonal photosynthetic rates. The results for all of the forest and grassland sites show that maximum Amax values occurs early during the growing period and taper off toward the end of the growing season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aber J D, Federer C A (1992). A generalized, lumped-parameter model of photosynthesis, evapotranspiration and net primary production in temperate and boreal forest ecosystems. Oecologia, 92(4): 463–474

    Article  Google Scholar 

  • Baldocchi D D (2008). Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust J Bot, 56(1): 1–26

    Article  Google Scholar 

  • Baldocchi D D (2003). Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob Change Biol, 9(4): 479–492

    Article  Google Scholar 

  • Baldocchi D D, Hincks B B, Meyers T P (1988). Measuring biosphereatmosphere exchanges of biologically related gases with micrometeorological methods. Ecology, 69(5): 1331–1340

    Article  Google Scholar 

  • Blanken P D, Monson R K, Burns S P, Turnipseed A A (2010). Data and Information for the US-NR1 Niwot Ridge Subalpine Forest AmeriFlux Site (LTER NWT1). AmeriFlux Management Project. Lawrence Berkeley National Laboratory, California

    Google Scholar 

  • Bourdeau P F (1959). Seasonal variations of the photosynthetic efficiency of evergreen conifers. Ecology, 40(1): 63–67

    Article  Google Scholar 

  • Braswell B H, Sacks W J, Linder E, Schimel D S (2005). Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations. Glob Change Biol, 11(2): 335–355

    Article  Google Scholar 

  • Chen M, Parton W J, Adair E C, Asao S, Hartman M D, Gao W (2016). Simulation of the effects of photodecay on long-term litter decay using DayCent. Ecosphere, 7(12): e01631

    Article  Google Scholar 

  • Chen M, Parton WJ, Del Grosso S J, Hartman M D, Day K A, Tucker C J, Derner J D, Knapp A K, Smith W K, Ojima D S, Gao W (2017). The signature of sea surface temperature anomalies on the dynamics of semiarid grassland productivity. Ecosphere, 8(12): e02069

    Article  Google Scholar 

  • Del Grosso S J, Parton W J, Mosier A R, Hartman M D, Brenner J, Ojima D S, Schimel D S (2001). Simulated Interaction of Carbon Dynamics and Nitrogen Trace Gas Fluxes Using the DAYCENT Model. In: Shaffer M J, Ma L W, Hansen S, eds. Modeling Carbon and Nitrogen Dynamics for Soil Management. Boca Raton: CRC Press, 303–332

    Google Scholar 

  • Del Grosso S J, Parton W J, Mosier A R, Ojima D S, Kulmala A E, Phongpan S (2000). General model for N2O and N2 gas emissions from soils due to dentrification. Global Biogeochem Cycles, 14(4): 1045–1060

    Article  Google Scholar 

  • Del Grosso S J, Parton W J, Stohlgren T J, Zheng D L, Bachelet D, Prince S, Hibbard K, Olson R (2008). Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology, 89(8): 2117–2126

    Article  Google Scholar 

  • Delbart N, Picard G, Le Toan T, Kergoat L, Quegan S, Woodward I, Dye D, Fedotova V (2008). Spring phenology in boreal Eurasia over a nearly century time scale. Glob Change Biol, 14(3): 603–614

    Article  Google Scholar 

  • Drake J E, Raetz L M, Davis S C, Delucia E H (2010). Hydraulic limitation not declining nitrogen availability causes the age-related photosynthetic decline in loblolly pine (Pinus taeda L.). Plant Cell Environ, 33(10): 1756–1766

    Article  Google Scholar 

  • Fisher R A (1932). Inverse probability and the use of likelihood. Math Proc Camb Philos Soc, 28(03): 257–261

    Article  Google Scholar 

  • Frey S D, Lee J, Melillo J M, Six J (2013). The temperature response of soil microbial efficiency and its feedback to climate. Nat Clim Chang, 3(4): 395–398

    Article  Google Scholar 

  • Gea-Izquierdo G, Mäkelä A, Margolis H, Bergeron Y, Black T A, Dunn A, Hadley J, Paw U K T, Falk M, Wharton S, Monson R, Hollinger D Y, Laurila T, Aurela M, McCaughey H, Bourque C, Vesala T, Berninger F (2010). Modeling acclimation of photosynthesis to temperature in evergreen conifer forests. New Phytol, 188(1): 175–186

    Article  Google Scholar 

  • Granda E, Scoffoni C, Rubio-Casal A E, Sack L, Valladares F (2014). Leaf and stem physiological responses to summer and winter extremes of woody species across temperate ecosystems. Oikos, 123 (11): 1281–1290

    Article  Google Scholar 

  • Guan M, Jin Z, Wang Q, Li Y, Zuo W (2014). Response of photosynthesis traits of dominant plant species to different light regimes in the secondary forest in the area of Qiandao Lake, Zhejiang, China. China Journal of Applied Ecology, 25: 1615–1622

    Google Scholar 

  • Hartman M D, Baron J S, Ewing H A, Weathers K C (2014). Combined global change effects on ecosystem processes in nine U.S. topographically complex areas. Biogeochemistry, 119(1–3): 85–108

    Article  Google Scholar 

  • Helms J A (1965). Diurnal and seasonal patterns of net assimilation in Douglas-Fir, Pseudotsuga Menziesii (Mirb). Franco, as Influenced by Environment. Ecology, 46(5): 698–708

    Google Scholar 

  • Hilborn R, Mangel M (1997). The ecological detective: confronting models with data. Monogr Popul Biol, 28: 315

    Google Scholar 

  • Hurtt G C, Armstrong R (1996). A pelagic ecosystem model calibrated with BATS data. Deep Sea Res Part II Top Stud Oceanogr, 43(2–3): 653–683

    Article  Google Scholar 

  • Huxman T E, Turnipseed A A, Sparks J P, Harley P C, Monson R K (2003). Temperature as a control over ecosystem CO2 fluxes in a high-elevation, subalpine forest. Oecologia, 134(4): 537–546

    Article  Google Scholar 

  • Johnson J B, Omland K S (2004). Model selection in ecology and evolution. Trends Ecol Evol, 19(2): 101–108

    Article  Google Scholar 

  • Kelly R H, Parton W J, Hartman M D, Stretch L K, Ojima D S, Schimel D S (2000). Intra-annual and interannual variability of ecosystem processes in shortgrass steppe. Journal of Geophysical Research: Atmospheres, 105(D15): 20093–20100

    Article  Google Scholar 

  • Li Z, Li X, Rubert-Nason K F, Yang Q, Fu Q, Feng J, Shi S (2018). Photosynthetic acclimation of an evergreen broadleaved shrub (Ammopiptanthus mongolicus) to seasonal climate extremes on the Alxa Plateau, a cold desert ecosystem. Trees (Berl), 32(2): 603–614

    Article  Google Scholar 

  • Linkosalo T, Häkkinen R, Terhivuo J, Tuomenvirta H, Hari P (2009). The time series of flowering and leaf bud burst of boreal trees (1846-2005) support the direct temperature observations of climatic warming. Agric Meteorol, 149(3–4): 453–461

    Article  Google Scholar 

  • Luyssaert S, Ciais P, Piao S L, Schulze E D, Jung M, Zaehle S, Schelhaas M J, Reichstein M, Churkina G, Papale D, Abril G, Beer C, Grace J, Loustau D, Matteucci G, Magnani F, Nabuurs G J, Verbeeck H, Sulkava M, van der WERF G R, Janssens I A (2010). The European carbon balance. Part 3: forests. Glob Change Biol, 16 (5): 1429–1450

    Google Scholar 

  • Luyssaert S, Schulze E D, Börner A, Knohl A, Hessenmöller D, Law B E, Ciais P, Grace J (2008). Old-growth forests as global carbon sinks. Nature, 455(7210): 213–215

    Article  Google Scholar 

  • Marshall J D, Rehfeldt G E, Monserud R A (2001). Family differences in height growth and photosynthetic traits in three conifers. Tree Physiol, 21(11): 727–734

    Article  Google Scholar 

  • Martinez K A, Fridley J D (2018). Acclimation of leaf traits in seasonal light environments: Are non-native species more plastic? J Ecol, 20: 207–216

    Google Scholar 

  • Massman W J, Lee X (2002). Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges. Agric Meteorol, 113(1–4): 121–144

    Article  Google Scholar 

  • McGarvey R C, Martin T A, White T L (2004). Integrating within-crown variation in net photosynthesis in loblolly and slash pine families. Tree Physiol, 24(11): 1209–1220

    Article  Google Scholar 

  • Mohren G M J, van de Veen J R (1995). Forest growth in relation to site conditions. Application of the model forgro to the Solling spruce site. Ecol Modell, 83(1–2): 173–183

    Google Scholar 

  • Monson R K, Sparks J P, Rosenstiel T N, Scott-Denton L E, Huxman T E, Harley P C, Turnipseed A A, Burns S P, Backlund B, Hu J (2005). Climatic influences on net ecosystem CO2 exchange during the transition from wintertime carbon source to springtime carbon sink in a high-elevation, subalpine forest. Oecologia, 146(1): 130–147

    Article  Google Scholar 

  • Monson R K, Turnipseed A A, Sparks J P, Harley P C, Scott-Denton L E, Sparks K, Huxman T E (2002). Carbon sequestration in a highelevation, subalpine forest. Glob Change Biol, 8(5): 459–478

    Article  Google Scholar 

  • Moore D J P, Hu J, Sacks W J, Schimel D S, Monson R K (2008). Estimating transpiration and the sensitivity of carbon uptake to water availability in a subalpine forest using a simple ecosystem process model informed by measured net CO2 and H2O fluxes. Agric Meteorol, 148(10): 1467–1477

    Article  Google Scholar 

  • Papale D, Valentini R (2003). A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Glob Change Biol, 9(4): 525–535

    Article  Google Scholar 

  • Parton W J, Hanson P J, Swanston C, Torn M, Trumbore S E, Riley W, Kelly R (2010). ForCent model development and testing using the enriched background isotope study experiment. J Geophys Res, 115 (G4): G04001

    Article  Google Scholar 

  • Parton WJ, Hartman M, Ojima D, Schimel D (1998). DAYCENT and its land surface submodel: description and testing. Global Planet Change, 19(1–4): 35–48

    Article  Google Scholar 

  • Parton W J, Rasmussen P E (1994). Long-term effects of crop management in wheat/fallow: II. CENTURY model simulations. Soil Sci Soc Am J, 58(2): 530–536

    Article  Google Scholar 

  • Parton W, Holland E A, Del Grosso S J, Hartman D, Martin M, Mosier A, Ojima D S, Schimel D S (2001). Generalized model for NOx and N2O emissions from soils. J Geophys Res, 106(D15): 17403–17419

    Google Scholar 

  • Paustian K, Parton W J, Persson J (1992). Modeling soil organic matter in organic-amended and nitrogen-fertilized long-term plots. Soil Sci Soc Am J, 56(2): 476–488

    Article  Google Scholar 

  • Piao S, Ciais P, Friedlingstein P, Peylin P, Reichstein M, Luyssaert S, Margolis H, Fang J, Barr A, Chen A, Grelle A, Hollinger D Y, Laurila T, Lindroth A, Richardson A D, Vesala T (2008). Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 451(7174): 49–52

    Article  Google Scholar 

  • Rastetter E B, Aber J D, Peters D P C, Ojima D S, Burke I C (2003). Using mechanistic models to scale ecological processes across space and time. Bioscience, 53(1): 68

    Article  Google Scholar 

  • Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grunwald T, Havrankova K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival J M, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Change Biol, 11(9): 1424–1439

    Article  Google Scholar 

  • Richardson A D, Keenan T F, Migliavacca M, Ryu Y, Sonnentag O, Toomey M (2013). Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric Meteorol, 169: 156–173

    Article  Google Scholar 

  • Ryan M G, Waring R H (1992). Maintenance respiration and stand development in a young subalpine lodgepole pine forest. Ecology, 73: 2100–2108

    Article  Google Scholar 

  • Sacks WJ, Schimel D S, Monson R K (2007). Coupling between carbon cycling and climate in a high-elevation, subalpine forest: a modeldata fusion analysis. Oecologia, 151(1): 54–68

    Article  Google Scholar 

  • Sacks WJ, Schimel D S, Monson R K, Braswell B H (2006). Model-data synthesis of diurnal and seasonal CO2 fluxes at Niwot Ridge, Colorado. Glob Change Biol, 12(2): 240–259

    Article  Google Scholar 

  • Savage K E, Parton WJ, Davidson E A, Trumbore S E, Frey S D (2013). Long-term changes in forest carbon under temperature and nitrogen amendments in a temperate northern hardwood forest. Glob Change Biol, 19(8): 2389–2400

    Article  Google Scholar 

  • Schimel D (1995). Terrestrial ecosystems and the carbon cycle. Glob Change Biol, 1(1): 77–91

    Article  Google Scholar 

  • Speckman H N, Frank J M, Bradford J B, Miles B L, Massman W J, Parton W J, Ryan M G (2015). Forest ecosystem respiration estimated from eddy covariance and chamber measurements under high turbulence and substantial tree mortality from bark beetles. Glob Change Biol, 21(2): 708–721

    Article  Google Scholar 

  • Tang X, Wang X, Wang Z, Liu D, Jia M, Dong Z, Xie J, Ding Z, Wang H, Liu X (2013). Influence of vegetation phenology on modelling carbon fluxes in temperate deciduous forest by exclusive use of MODIS time-series data. Int J Remote Sens, 34(23): 8373–8392

    Article  Google Scholar 

  • Tang X, Wang Z, Liu D, Song K, Jia M, Dong Z, Munger J W, Hollinger D Y, Bolstad P V, Goldstein A H, Desai A R, Dragoni D, Liu X (2012). Estimating the net ecosystem exchange for the major forests in the northern United States by integrating MODIS and AmeriFlux data. Agric Meteorol, 156: 75–84

    Article  Google Scholar 

  • Turnipseed A A, Anderson D E, Blanken P D, Baugh WM, Monson R K (2003). Airflows and turbulent flux measurements in mountainous terrain. Part 1. Canopy and local effects. Agric Meteorol, 119(1–2): 1–21

    Google Scholar 

  • Turnipseed A A, Anderson D E, Burns S, Blanken P D, Monson R K (2004). Airflows and turbulent flux measurements in mountainous terrain: Part 2: Mesoscale effects. Agric Meteorol, 125(3–4): 187–205

    Article  Google Scholar 

  • Turnipseed A A, Blanken P D, Anderson D E, Monson R K (2002). Energy budget above a high-elevation subalpine forest in complex topography. Agric Meteorol, 110(3): 177–201

    Article  Google Scholar 

  • Urban O, Holub P, Klem K (2017). Seasonal courses of photosynthetic parameters in sun- and shade-acclimated spruce shoots. Beskydy, 10 (1–2): 49–56

    Google Scholar 

  • Wang Y P, Baldocchi D, Leuning R, Falge E, Vesala T (2007). Estimating parameters in a land-surface model by applying nonlinear inversion to eddy covariance flux measurements from eight FLUXNET sites. Glob Change Biol, 13(3): 652–670

    Article  Google Scholar 

  • Wang Y P, Barrett D J (2003). Estimating regional terrestrial carbon fluxes for the Australian continent using a multiple-constraint approach I. Using remotely sensed data and ecological observations of net primary production. Tellus B Chem Phys Meterol, 55: 270–289

    Google Scholar 

  • Weiskittel A R, Maguire D, Garber S M, Kanaskie A (2006). Influence of Swiss needle cast on foliage age-class structure and vertical foliage distribution in Douglas-fir plantations in north coastal Oregon. Can J Res, 36(6): 1497–1508

    Article  Google Scholar 

  • Zhang Y J, Holbrook N M, Cao K F (2014). Seasonal dynamics in photosynthesis of woody plants at the northern limit of Asian tropics: potential role of fog in maintaining tropical rainforests and agriculture in Southwest China. Tree Physiol, 34(10): 1069–1078

    Article  Google Scholar 

  • Zhang Y J, Sack L, Cao K F, Wei X M, Li N (2017). Speed versus endurance tradeoff in plants: leaves with higher photosynthetic rates show stronger seasonal declines. Sci Rep, 7(1): 42085

    Article  Google Scholar 

  • Ziello C, Estrella N, Kostova M, Koch E, Menzel A (2009). Influence of altitude on phenology of selected plant species in the Alpine region (1971-2000). Clim Res, 39: 227–234

    Article  Google Scholar 

  • Zobitz J M, Moore D J P, Sacks W J, Monson R K, Bowling D R, Schimel D S (2008). Integration of process-based soil respiration models with whole-ecosystem CO2 measurements. Ecosystems (N Y), 11(2): 250–269

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the US Department of Agriculture (USDA) UV-B Monitoring and Research Program, Colorado State University, under USDA National Institute of Food and Agriculture Grant 2016-34263-25763.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jonathan R. Straube or Yan-An Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Straube, J.R., Chen, M., Parton, W.J. et al. Development of the DayCent-Photo model and integration of variable photosynthetic capacity. Front. Earth Sci. 12, 765–778 (2018). https://doi.org/10.1007/s11707-018-0736-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-018-0736-6

Keywords

Navigation